Recent work indicates that vomeronasal and taste transduction in vertebrates share similar transduction pathways: G protein-coupled receptors signal through phospholipase C (PLC) to open a member of the TRP family of ion channels, TRPC2 for the vomeronasal organ (VNO) and TRPM5 for taste. The importance of these ion channels for chemosensation is highlighted by the lack of response to pheromones in TRPC2 knockout mice and to bitter, sweet and amino acid tastes in TRPM5 knockout animals. Understanding the mechanisms by which TRP ion channels are gated, has proven difficult in any system, and remains an essential goal for understanding taste and VNO transduction. In the last grant period, we discovered that TRPM5 is activated by intracellular Ca +, suggesting that Ca + may be the second messenger for some forms of taste transduction. In the next grant period we aim to understand the molecular mechanisms that underlie regulation of TRPM5, and how molecular properties of TRPM5 influence taste sensation. We will specifically address the following questions: (1) What are the mechanisms by which TRPM5 channels are activation and inactivated? In these studies we will use patch-clamp recording of expressed TRPM5, together with pharmacological and structural manipulations of the channel. (2) Do blockers of TRPM5 interfere with taste detection? Blockers will be identified by patch-clamp recording from cells expressing TRPM5 and the effects of identified blockers on taste thresholds in mice will be determined (3) Do similar channels to TRPM5 play a role in VNO transduction? TRPM5 and related channels are widely expresed in the body, and mutations in these channels may underlie certain pathological states. By understanding the regulation of these channels, we can understand their contribution to signaling in health and disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
2R01DC004564-06
Application #
6922513
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Davis, Barry
Project Start
2000-03-01
Project End
2008-02-29
Budget Start
2005-03-01
Budget End
2006-02-28
Support Year
6
Fiscal Year
2005
Total Cost
$286,000
Indirect Cost
Name
University of Southern California
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90089
Liman, Emily R (2014) TRPM5. Handb Exp Pharmacol 222:489-502
Liman, Emily R; Zhang, Yali V; Montell, Craig (2014) Peripheral coding of taste. Neuron 81:984-1000
Liman, Emily R (2012) Changing senses: chemosensory signaling and primate evolution. Adv Exp Med Biol 739:206-17
Wang, Yuanyuan Y; Chang, Rui B; Allgood, Sallie D et al. (2011) A TRPA1-dependent mechanism for the pungent sensation of weak acids. J Gen Physiol 137:493-505
Liman, Emily R (2010) A TRP channel contributes to insulin secretion by pancreatic ?-cells. Islets 2:331-3
Chang, Rui B; Waters, Hang; Liman, Emily R (2010) A proton current drives action potentials in genetically identified sour taste cells. Proc Natl Acad Sci U S A 107:22320-5
Wang, Yuanyuan Y; Chang, Rui B; Liman, Emily R (2010) TRPA1 is a component of the nociceptive response to CO2. J Neurosci 30:12958-63
Cornell, Robert A; Aarts, Michelle; Bautista, Diana et al. (2008) A double TRPtych: six views of transient receptor potential channels in disease and health. J Neurosci 28:11778-84
Liman, E R (2007) TRPM5 and taste transduction. Handb Exp Pharmacol :287-98
Young, Janet M; Waters, Hang; Dong, Cora et al. (2007) Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS One 2:e884

Showing the most recent 10 out of 14 publications