Auditory experience can reshape cortical maps and transform receptive field properties of neurons in the auditory cortex of the adult animal. The exact form of this plasticity depends on the behavioral context, and the spectrotemporal features of the salient acoustic stimuli. This has been shown by combined physiological and behavioral approaches in our previous experiments in which spectrotemporal receptive fields (STRFs) were rapidly and comprehensively characterized simultaneous with the animal behavior. The experiments also contrasted plasticity in single cells across different auditory tasks employing various acoustic signals with controlled spectral and temporal features. These results are consistent with findings of adaptive plasticity in the motor and other sensory systems and support the hypothesis that auditory cortical cells may undergo rapid, context-dependent changes of their receptive field properties when an animal is engaged in different auditory behavioral tasks. This kind of plasticity would likely involve a selective functional reshaping of the underlying cortical circuitry to sculpt the most effective receptive field for accomplishing the current auditory task. During the last 5 years, we explored how this plasticity manifested itself in the dPEG and VPr fields of the ferret auditory cortex. In this grant period, we hope to complete the characterization of this plasticity and also examine its role in two important cognitive functions: Categorization and Encoding of Sequences. We shall conduct our physiological experiments with dense arrays of planar and laminar multielectrode arrays, as well as functional Ultrasound imaging to gain a view of the global distribution of neuronal activity during and after training These experiments will lead to progress in understanding the interactions within an extended neuronal network covering most of the auditory posterior cortical fields in the ferret which give rise to adaptive plasticity.
The phenomenon of plasticity that is the focus of the proposed research is fundamental to learning, behavioral performance, and to the repair of the nervous system after damage. Our goal is to understand how plasticity manifests itself in the responses of the auditory cortex, and how do the acoustic stimuli interact with the behavioral feedback to influence the changes in the cortex. The findings of this research could have profound consequences for the design and deployment of hearing aids and cochlear implants.
Lu, Kai; Liu, Wanyi; Zan, Peng et al. (2018) Implicit Memory for Complex Sounds in Higher Auditory Cortex of the Ferret. J Neurosci 38:9955-9966 |
Bimbard, Célian; Demene, Charlie; Girard, Constantin et al. (2018) Multi-scale mapping along the auditory hierarchy using high-resolution functional UltraSound in the awake ferret. Elife 7: |
Martin, Stephanie; Mikutta, Christian; Leonard, Matthew K et al. (2018) Neural Encoding of Auditory Features during Music Perception and Imagery. Cereb Cortex 28:4222-4233 |
Winkowski, Daniel E; Nagode, Daniel A; Donaldson, Kevin J et al. (2018) Orbitofrontal Cortex Neurons Respond to Sound and Activate Primary Auditory Cortex Neurons. Cereb Cortex 28:868-879 |
Francis, Nikolas A; Elgueda, Diego; Englitz, Bernhard et al. (2018) Laminar profile of task-related plasticity in ferret primary auditory cortex. Sci Rep 8:16375 |
Chambers, Claire; Akram, Sahar; Adam, Vincent et al. (2017) Prior context in audition informs binding and shapes simple features. Nat Commun 8:15027 |
Mehta, Anahita H; Jacoby, Nori; Yasin, Ifat et al. (2017) An auditory illusion reveals the role of streaming in the temporal misallocation of perceptual objects. Philos Trans R Soc Lond B Biol Sci 372: |
Lu, Kai; Xu, Yanbo; Yin, Pingbo et al. (2017) Temporal coherence structure rapidly shapes neuronal interactions. Nat Commun 8:13900 |
Mehta, Anahita H; Yasin, Ifat; Oxenham, Andrew J et al. (2016) Neural correlates of attention and streaming in a perceptually multistable auditory illusion. J Acoust Soc Am 140:2225 |
Joosten, Eva R M; Shamma, Shihab A; Lorenzi, Christian et al. (2016) Dynamic Reweighting of Auditory Modulation Filters. PLoS Comput Biol 12:e1005019 |
Showing the most recent 10 out of 50 publications