The long-term goal of my laboratory is to elucidate the mechanisms that control mechanotransduction in hair cells, and the defects in this process that cause deafness. We propose here to study the mechanisms that regulate the assembly and function of the hair cell's mechanotransduction complex. We hypothesize that several proteins including TMIE, LHFPL5, TMC1/2, and CIB2 assemble into a mechanotransduction complex in hair cell stereocilia. We predict that some of these proteins contribute to the pore of the transduction channel while other regulate pore properties or link the channel to the tip link and the cytoskeleton. We also predict that a specialized molecular machinery regulates the transport of the components of the mechanotransduction machinery from the cell body into stereocilia. To test our hypothesis, we will use genetically modified combined with biochemical, cell biological and electrophysiological methods to study protein function in protein transport and mechanotransduction. Our preliminary data show the feasibility of our approach. We have new evidence regarding the mechanisms by which components of the mechanotransduction machinery function within the transduction complex and we have identified new proteins that regulate protein transport from the cell body into stereocilia.
Hearing loss is a major health problem that significantly affects the life quality of affected individuals. Many forms of hearing loss are genetic in origin and affect hair cells, the mechanosensors that convert sound induced vibrations into electrical signals. We propose here to study components of the mechanotransduction machinery of hair cells, and how mutations in the genes that encode these components lead to hearing loss, which we anticipate will ultimately lead to better treatment of the disease.
Showing the most recent 10 out of 26 publications