In order to detect and discriminate numerous odorants encountered in the environment, the mammalian olfactory system employs a large family (>1000 in rodents) of odorant receptors (ORs), which belong to the superfamily of seven transmembrane (TM), G protein-coupled receptors (GPCRs). The olfactory epithelium in the nasal cavity harbors a few million olfactory sensory neurons (OSNs) with each neuron expressing a single OR type. Despite the diversity of OR proteins, they are all coupled to common G proteins which trigger a well- characterized cAMP transduction cascade to transform the chemical signals into electrical signals. However, little is known about the molecular and structural mechanisms underlying receptor-ligand binding and G protein activation. The consensus model in the field is that ORs are used combinatorially to encode odor identities with each OR capable of interacting with a small number of specific ligands. We recently discovered a mouse OR (SR1 or MOR256-3) with unconventional properties;i.e., it responds to many odorants with diverse size, shape, and functional groups. In addition to broad responsiveness, genetically labeled SR1 neurons also show mechanical responses to pressure changes, which are likely mediated by a similar cAMP cascade for odorant responses. Using SR1 and a few classical, selective ORs as models, the long-term goal of this project is to understand the molecular and structural basis for OR tuning properties and OR-G protein interactions. By combining patch-clamp, gene-targeting, site-directed mutagenesis, and heterologous expression approaches, we will specifically test the following hypotheses. First, the broadly-tuned SR1 has a lower activation threshold so that SR1 neurons have a higher spontaneous activity level than those expressing narrowly-tuned ORs. Furthermore, amino acid variations in two highly-conserved domains near the cytoplasmic ends of TM3 and TM6 cause gain-of-function phenotype in broadly-tuned ORs such as SR1, which has uncharacteristic sequences in these regions. Consequently, even non-preferred ligands can cause sufficient conformational changes in the receptor to activate G proteins. Second, broadly-tuned ORs serve as mechanical sensors in the host OSNs and mechanical stimulation (such as that carried by the airflow) can induce enough conformational alterations to activate the receptor and subsequently the G protein cascade. Third, various G proteins play different roles in shaping the selectivity and sensitivity of OSNs. Some narrowly-tuned ORs can confer broad responsiveness and mechanosensitivity to OSNs under more permissive cellular conditions. Overall, carrying out these studies will provide new insights into the molecular basis for the tuning properties of ORs and the cellular features defining the specificity and mechanosensitivity of OSNs. This project will advance our knowledge on how odor and airflow information is encoded and processed by the olfactory system.

Public Health Relevance

Millions of people, especially the elderly, suffer from smell dysfunction, which poses a negative impact on their quality of life. A better understanding on the molecular and structural basis for ligand recognition by odorant receptors will help to develop medical treatments to enhance the desired smell functions. These studies will also help to design better therapeutic agents targeting other G protein-coupled receptors, which play pivotal roles in signal transduction in all body organs.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Moberly, Andrew H; Schreck, Mary; Bhattarai, Janardhan P et al. (2018) Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat Commun 9:1528
Efimova, Nadia; Korobova, Farida; Stankewich, Michael C et al. (2017) ?III Spectrin Is Necessary for Formation of the Constricted Neck of Dendritic Spines and Regulation of Synaptic Activity in Neurons. J Neurosci 37:6442-6459
Yu, Yiqun; Moberly, Andrew H; Bhattarai, Janardhan P et al. (2017) The Stem Cell Marker Lgr5 Defines a Subset of Postmitotic Neurons in the Olfactory Bulb. J Neurosci 37:9403-9414
Challis, Rosemary C; Tian, Huikai; Yin, Wenbin et al. (2016) Genetic Ablation of Type III Adenylyl Cyclase Exerts Region-Specific Effects on Cilia Architecture in the Mouse Nose. PLoS One 11:e0150638
Challis, Rosemary C; Tian, Huikai; Wang, Jue et al. (2015) An Olfactory Cilia Pattern in the Mammalian Nose Ensures High Sensitivity to Odors. Curr Biol 25:2503-12
de March, Claire A; Yu, Yiqun; Ni, Mengjue J et al. (2015) Conserved Residues Control Activation of Mammalian G Protein-Coupled Odorant Receptors. J Am Chem Soc 137:8611-8616
Yu, Yiqun; de March, Claire A; Ni, Mengjue J et al. (2015) Responsiveness of G protein-coupled odorant receptors is partially attributed to the activation mechanism. Proc Natl Acad Sci U S A 112:14966-71
Jiang, Yue; Li, Yun Rose; Tian, Huikai et al. (2015) Muscarinic acetylcholine receptor M3 modulates odorant receptor activity via inhibition of ?-arrestin-2 recruitment. Nat Commun 6:6448
Connelly, Timothy; Yu, Yiqun; Grosmaitre, Xavier et al. (2015) G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci U S A 112:590-5
Omura, Masayo; Grosmaitre, Xavier; Ma, Minghong et al. (2014) The ?2-adrenergic receptor as a surrogate odorant receptor in mouse olfactory sensory neurons. Mol Cell Neurosci 58:1-10

Showing the most recent 10 out of 24 publications