How the cochleae of humans and other mammals achieve their remarkable sensitivity, frequency selectivity, and enormous dynamic range has been the central question in auditory neurobiology. Two competing mechanisms have been proposed: the mammalian-specific prestin-based outer hair cell (OHC) electromotility and the ubiquitous stereociliary motility. In the previous funding period, we demonstrated that: (1) prestin-based OHC electromotility is necessary for cochlear amplification;(2) prestin plays a novel role in frequency tuning of cochlear passive mechanical responses and their transmission to neural excitation;(3) prestin based OHC electromotility does not appear to adjust the operating point of stereociliary motility;and (4) Glut5, a previously hypothesized OHC motor protein, is undetectable in OHCs and does not contribute to cochlear amplification. Based on these and other advances, we propose a unified amplificatory mechanism that stipulates stereociliary motility for tuning and electromotility for power. However, it remains controversial whether prestin plays both active and passive mechanical roles and whether prestin-based electromotility performs the necessary cycle-by-cycle feedback. Furthermore, it is still unclear how prestin drives coordinated changes in the lateral plasma membrane and underlying cytoskeletal structure for OHC electromotility. To further elucidate prestin's roles in OHC electromotility and cochlear amplification, we will pursue the following Specific Aims: 1) Determine how prestin-based OHC electromotility generates cochlear amplification. 2). Determine the distribution, trafficking, and membrane mobility of prestin in OHCs. Recently, two putative mutations in the human prestin gene have been reported to cause deafness. Hearing loss induced by large doses of sodium salicylate (aspirin) has been attributed to a reduction in prestin-based OHC electromotility. Moreover, prestin is likely the common effector of hearing loss in some patients with high-frequency hearing loss. Our studies will contribute greatly to our understanding of cochlear amplification and the pathophysiology of deafness caused by a variety of genetic and environmental factors.

Public Health Relevance

An estimated 28 million people in the United States are deaf or hard of hearing. Approximately 1.5 million individuals aged 3 years or older are deaf in both ears and 2 to 3 per 1,000 live births suffer congenital hearing loss. More than 40 million persons in the United States suffer various levels of noise induced hearing loss. Nearly half of people over 65 years of age develop age-related hearing loss. Despite the significant progress in our understanding of these hearing disorders, very little is known about the disease causes and about the normal hearing processes in adults. Here we propose to study prestin, a motor protein in the inner ear that is crucial for our hearing sensitivity and frequency selectivity. Recently, two putative mutations in the human prestin gene have been reported to cause deafness. Hearing loss induced by large doses of sodium salicylate (aspirin) has been attributed to prestin-mediated hearing dysfunction. Moreover, prestin is likely the common effector of hearing loss in some patients with high-frequency hearing loss. Our studies will contribute greatly to our understanding of cochlear physiology and the pathophysiology of deafness caused by a variety of genetic and environmental factors.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC006471-09
Application #
8209243
Study Section
Special Emphasis Panel (ZRG1-IFCN-F (02))
Program Officer
Watson, Bracie
Project Start
2004-01-01
Project End
2013-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
9
Fiscal Year
2012
Total Cost
$342,120
Indirect Cost
$138,477
Name
St. Jude Children's Research Hospital
Department
Type
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Teitz, Tal; Fang, Jie; Goktug, Asli N et al. (2018) CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J Exp Med 215:1187-1203
Hazlitt, Robert A; Min, Jaeki; Zuo, Jian (2018) Progress in the Development of Preventative Drugs for Cisplatin-Induced Hearing Loss. J Med Chem 61:5512-5524
Walters, Bradley J; Coak, Emily; Dearman, Jennifer et al. (2017) In Vivo Interplay between p27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice. Cell Rep 19:307-320
Zheng, Fei; Zuo, Jian (2017) Cochlear hair cell regeneration after noise-induced hearing loss: Does regeneration follow development? Hear Res 349:182-196
Lukashkina, Victoria A; Yamashita, Tetsuji; Zuo, Jian et al. (2017) Amplification mode differs along the length of the mouse cochlea as revealed by connexin 26 deletion from specific gap junctions. Sci Rep 7:5185
Zhang, Jian; Liu, Ziyi; Chang, Aoshuang et al. (2016) Abnormal mRNA splicing but normal auditory brainstem response (ABR) in mice with the prestin (SLC26A5) IVS2-2A>G mutation. Mutat Res 790:1-7
Teitz, Tal; Goktug, Asli N; Chen, Taosheng et al. (2016) Development of Cell-Based High-Throughput Chemical Screens for Protection Against Cisplatin-Induced Ototoxicity. Methods Mol Biol 1427:419-30
Walters, Brandon J; Diao, Shiyong; Zheng, Fei et al. (2015) Pseudo-immortalization of postnatal cochlear progenitor cells yields a scalable cell line capable of transcriptionally regulating mature hair cell genes. Sci Rep 5:17792
Yamashita, Tetsuji; Hakizimana, Pierre; Wu, Siva et al. (2015) Outer Hair Cell Lateral Wall Structure Constrains the Mobility of Plasma Membrane Proteins. PLoS Genet 11:e1005500
Walters, Bradley J; Zuo, Jian (2015) A Sox10(rtTA/+) Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear. J Assoc Res Otolaryngol 16:331-45

Showing the most recent 10 out of 66 publications