The proposed project will continue and extend our present studies on cortical-subcortical interactions during speech using the effects of PD and DBS to probe the neurological basis of motor speech control, and the effects of PD and DBS on speech. Continuing our functional imaging with PET, we will add structural imaging, diffusion tensor imaging, and tractography using MRI. We will continue probing speech with a range of tasks incorporating reading, recitation, repetition, and spontaneous speech. We will evaluate intelligibility and perceptual ratings, using these results to inform acoustic analyses. We are adding expertise in statistical modeling and the application of MRI to the study of voice pathology. Our goal is to answer basic clinical and speech science questions. Several fundamental questions need to be addressed in this field. Clinically, we need a better estimate of how often DBS results in greater speech impairment, and when it occurs, how it can be characterized. We need to understand the extent to which DBS-related speech impairments result from changes in brain networks for speech, global brain effects, and/or stimulation of motor tracts adjacent to the subthalamic nucleus. From the speech science perspective, we need to characterize cortical-subcortical interactions for a range of speech tasks to better understand the role of the basal ganglia, cortical, and cerebellar regions in speech. We are approaching the goals of this project with a combination of well-controlled experimental studies, studies of special cases that may be especially informative, and an innovative approach to clinical survey studies. Our finding that DBS enhances some components of speech while retarding others provides an important step in understanding an inconsistent literature. Further, analysis of our PET data suggests that DBS changes the basic relationship between speech and cortical-subcortical interactions. Our major working hypotheses are that: cortical lateral asymmetry is associated with fluency;subcortical regions are strongly associated with phonation, particularly the first two formants, and these are shifted during DBS;when DBS strengthens phonation, an additional burden is placed on articulatory control;both brain and speech effects are task dependent, with the greatest difficulty observed during conversation. Our work also suggests that global blood flow is related to pausing during speech, with DBS on and off, and in PD subjects without DBS. This may reflect the integrity of the central nervous system in PD, and will be further examined with diffusion tensor imaging. In addition to the detailed imaging studies, we will conduct a broader, clinic-based study of conversational and repeated speech before and after DBS surgery. Taken together, these studies should provide a better understanding of the range and severity of speech changes following DBS, and the brain changes associated with these changes.

Public Health Relevance

Parkinson's disease (PD) is a progressive movement disorder that impairs the ability to speak clearly. Deep brain stimulation (DBS) improves many of the motor symptoms of PD, but does not help and sometimes harms the ability to speak. This project seeks to understand the effects of PD and DBS on speech with the long-term goals of (1) modifying DBS to preserve or improve speech in PD and (2) improving our understanding of cortical-subcortical interactions during speech.

Agency
National Institute of Health (NIH)
Institute
National Institute on Deafness and Other Communication Disorders (NIDCD)
Type
Research Project (R01)
Project #
5R01DC007658-07
Application #
8451205
Study Section
Special Emphasis Panel (ZRG1-BBBP-E (04))
Program Officer
Shekim, Lana O
Project Start
2005-07-01
Project End
2017-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
7
Fiscal Year
2013
Total Cost
$416,842
Indirect Cost
$121,706
Name
Nathan Kline Institute for Psychiatric Research
Department
Type
DUNS #
167204762
City
Orangeburg
State
NY
Country
United States
Zip Code
10962
Sidtis, Diana Van Lancker; Sidtis, John J (2018) The Affective Nature of Formulaic Language: A Right-Hemisphere Subcortical Process. Front Neurol 9:573
Van Lancker Sidtis, Diana; Sidtis, John J (2018) Cortical-subcortical production of formulaic language: A review of linguistic, brain disorder, and functional imaging studies leading to a production model. Brain Cogn 126:53-64
Sidtis, Diana; Sidtis, John J (2017) Subcortical Effects on Voice and Fluency in Dysarthria: Observations from Subthalamic Nucleus Stimulation. J Alzheimers Dis Parkinsonism 7:
Kirke, Diana N; Battistella, Giovanni; Kumar, Veena et al. (2017) Neural correlates of dystonic tremor: a multimodal study of voice tremor in spasmodic dysphonia. Brain Imaging Behav 11:166-175
Van Lancker Sidtis, Diana; Sidtis, John J (2017) Evaluation, treatment, and analysis of a rare case of motor speech systems dyscoordination syndrome. Cogent Med 4:
Sidtis, John J; Alken, Amy G; Tagliati, Michele et al. (2016) Subthalamic Stimulation Reduces Vowel Space at the Initiation of Sustained Production: Implications for Articulatory Motor Control in Parkinson's Disease. J Parkinsons Dis 6:361-70
Van Lancker Sidtis, Diana; Choi, JiHee; Alken, Amy et al. (2015) Formulaic Language in Parkinson's Disease and Alzheimer's Disease: Complementary Effects of Subcortical and Cortical Dysfunction. J Speech Lang Hear Res 58:1493-507
Sidtis, John J (2015) Functional connectivity associated with acoustic stability during vowel production: implications for vocal-motor control. Brain Connect 5:115-25
Van Lancker Sidtis, Diana; Cameron, Krista; Bridges, Kelly et al. (2015) The formulaic schema in the minds of two generations of native speakers. Ampersand (Oxford) 2:39-48
Elahi, Sahar; Bachman, Alvin H; Lee, Sang Han et al. (2015) Corpus callosum atrophy rate in mild cognitive impairment and prodromal Alzheimer's disease. J Alzheimers Dis 45:921-31

Showing the most recent 10 out of 29 publications