A central goal of neuroscience is to clarify how the brain transforms sensory inputs into perceptual representations. Curiously, even though odor stimuli are at the heart of goal-directed behavior, including feeding, mating, and maternal bonding (for both human and non-human species), very little is known about the neural transformations that create olfactory percepts out of airborne molecules. Because most odors are complex mixtures of different molecules, an important challenge of olfactory systems is to re-assemble these parts into coherent perceptual wholes, or """"""""objects,"""""""" that are perceptually anchored to their original sources in the environment. Understanding how the human brain encodes, discriminates, and categorizes olfactory objects is a key research focus in our lab. An advantage to studying humans is that they can talk and provide ratings of their sensory experiences, offering a highly tractable way to relate brain activity patterns directly to perception. In work proposed here, we will leverage our current strengths in olfactory psychophysics, functional magnetic resonance imaging (fMRI), and pattern-based imaging analysis with new methodological, experimental, and computational approaches to dissect the components of odor perceptual processing at the behavioral and neural levels. By effectively deconstructing either the odor stimulus or the olfactory system, we will be able to gain unique insights into the functional organization of odor object coding and recognition. Specific studies will explore where conscious perception of an odor arises in the human brain, how higher- order regions contribute to perceptual coding and categorization, and whether the brain has access to individual elements of a behaviorally salient food odor. Complementary studies will investigate the role of familiarity, reward learning, and levels of prior belief on the emergence and modulation of odor object patterns and connectivity in olfactory and non-olfactory brain areas. Together these experiments will bring novel understanding of how the human brain overcomes the challenges of recognizing odor objects, and will highlight the key regions that are instrumental in supporting odor perception. In addition, our findings should usefully inform the human neurobiology of the other sensory systems, and should contribute valuable basic information that could help guide development of future diagnostic strategies in patients with Alzheimer's disease and Parkinson's disease, which are associated with olfactory perceptual deficits in their earliest stages.

Public Health Relevance

In combining cutting-edge neuroimaging techniques with olfactory psychophysical approaches in healthy human subjects, the proposed research will generate new insights into odor object recognition and coding in the human olfactory system, and may help inform the neurobiology of object processing in other sensory systems. Furthermore, given that abnormalities in the sense of smell often emerge as an early or premonitory sign in many different neurodegenerative syndromes, including Alzheimer's disease and Parkinson's disease, the work proposed here may help lead to the development of new imaging biomarkers for pre-clinical diagnosis of these disorders.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-IFCN-B (02))
Program Officer
Sullivan, Susan L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
Perrotta, Valentina; Graffeo, Michele; Bonini, Nicolao et al. (2016) The Putative Chemosignal Androstadienone Makes Women More Generous. J Neurosci Psychol Econ 9:88-99
Howard, James D; Kahnt, Thorsten; Gottfried, Jay A (2016) Converging prefrontal pathways support associative and perceptual features of conditioned stimuli. Nat Commun 7:11546
Bao, Xiaojun; Raguet, Louise Lg; Cole, Sydni M et al. (2016) The role of piriform associative connections in odor categorization. Elife 5:
Qu, Lisa P; Kahnt, Thorsten; Cole, Sydni M et al. (2016) De Novo Emergence of Odor Category Representations in the Human Brain. J Neurosci 36:468-78
Howard, James D; Gottfried, Jay A; Tobler, Philippe N et al. (2015) Identity-specific coding of future rewards in the human orbitofrontal cortex. Proc Natl Acad Sci U S A 112:5195-200
Jin, Jingwen; Zelano, Christina; Gottfried, Jay A et al. (2015) Human Amygdala Represents the Complete Spectrum of Subjective Valence. J Neurosci 35:15145-56
Olofsson, Jonas K; Gottfried, Jay A (2015) The muted sense: neurocognitive limitations of olfactory language. Trends Cogn Sci 19:314-21
Olofsson, Jonas K; Hurley, Robert S; Bowman, Nicholas E et al. (2014) A designated odor-language integration system in the human brain. J Neurosci 34:14864-73
Howard, James D; Gottfried, Jay A (2014) Configural and elemental coding of natural odor mixture components in the human brain. Neuron 84:857-69
Hauner, Katherina K; Howard, James D; Zelano, Christina et al. (2013) Stimulus-specific enhancement of fear extinction during slow-wave sleep. Nat Neurosci 16:1553-5

Showing the most recent 10 out of 25 publications