The acquired enamel pellicle is a protein film readily formed on tooth mineral surfaces in the oral environment. It has been established that its formation is driven by the adsorption of proteins and peptides derived from oral fluid. Most of these proteins originate from either parotid or submandibular/ sublingual secretions which undergo modifications in the oral cavity before or after adsorption to the hydroxyapatite crystallites of tooth enamel. The composition and the structure of this acquired enamel pellicle are still largely unknown but play functionally a vital role with important physiological/clinical implications. A major thrust of this application is to use state-of-the-art proteomics to identify and characterize the major components of the in-vivo formed pellicle. Since the pellicle has an inner aspect facing the tooth surface and an outer aspect connected to the bacterial biofilm known as Dental plaque the functions of pellicle are multifaceted and complex. Another major goal is to investigate the protective functions of the pellicle vis-a-vis the maintenance of the mineral phase of enamel and the interplay between molecular entities of the pellicle and those bacteria which constitute the early colonizers of the biofilm forming on the tooth surface. The nature of the pellicle with respect to the early attachment of bacteria including those which are known periodontal pathogens will be studied in vitro and in vivo.
The Specific Aims of the project are to: 1) Characterize components from pellicles formed in vivo by a variety of isolation techniques including 2D-electrophoresis followed by proteomic analyses comprising MALDI-TOF MS. LC-ESI MS and LC-MS/MS; 2) Explore the protective functions of the enamel pellicle by determining the affinity of its components to hydroxyapatite, the inhibitory potential of pellicle proteins/peptides of calcium phosphate precipitation from supersaturated solutions, and the capacity to retard demineralization; 3) Determine in vitro binding parameters of individual early pellicle colonizers, assess the role of transglutaminase in pellicle-bacterial interactions and employ biomimetic approaches to modify functional aspects of pellicle components; 4) Investigate with the checkerboard DNA-DNA hybridization assay the in vivo binding of early pellicle colonizers in healthy individuals and gingivitis patients, assess the relative role of exocrine and serum derived proteins/peptides on pellicle colonization in vivo and explore effects of different local environments in the oral cavity on these processes.

National Institute of Health (NIH)
National Institute of Dental & Craniofacial Research (NIDCR)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-OBM-1 (01))
Program Officer
Gorr, Sven-Ulrik
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Boston University
Schools of Dentistry
United States
Zip Code
Heller, D; Helmerhorst, E J; Oppenheim, F G (2017) Saliva and Serum Protein Exchange at the Tooth Enamel Surface. J Dent Res 96:437-443
Heller, D; Helmerhorst, E J; Gower, A C et al. (2016) Microbial Diversity in the Early In Vivo-Formed Dental Biofilm. Appl Environ Microbiol 82:1881-8
Little, Frédéric F; Delgado, Diana M; Wexler, Philip J et al. (2014) Salivary inflammatory mediator profiling and correlation to clinical disease markers in asthma. PLoS One 9:e84449
Vukosavljevic, D; Hutter, J L; Helmerhorst, E J et al. (2014) Nanoscale adhesion forces between enamel pellicle proteins and hydroxyapatite. J Dent Res 93:514-9
Iavarone, Federica; D'Alessandro, Alfredo; Tian, Na et al. (2014) High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser?? (Phos) ? Phe varian J Sep Sci 37:1896-902
Trindade, Fábio; Oppenheim, Frank G; Helmerhorst, Eva J et al. (2014) Uncovering the molecular networks in periodontitis. Proteomics Clin Appl 8:748-61
Thomadaki, K; Bosch, Ja; Oppenheim, Fg et al. (2013) The diagnostic potential of salivary protease activities in periodontal health and disease. Oral Dis 19:781-8
Oppenheim, Frank G; Helmerhorst, Eva J; Lendenmann, Urs et al. (2012) Anti-candidal activity of genetically engineered histatin variants with multiple functional domains. PLoS One 7:e51479
Carneiro, L G; Venuleo, C; Oppenheim, F G et al. (2012) Proteome data set of human gingival crevicular fluid from healthy periodontium sites by multidimensional protein separation and mass spectrometry. J Periodontal Res 47:248-62
Thomadaki, K; Helmerhorst, E J; Tian, N et al. (2011) Whole-saliva proteolysis and its impact on salivary diagnostics. J Dent Res 90:1325-30

Showing the most recent 10 out of 26 publications