Understanding the molecular mechanisms by which specific cell types develop from a common primordium in the anterior pituitary gland represents a basic question in molecular and developmental biology. Under this Grant, we analyzed the roles of Pit-1, cloned and characterized Prop-1 as the hypomorphic allele causing the Ames genetic dwarfism, and identified disease alleles in human pituitary combined hormone deficiency syndrome; identified the signaling molecules from ventral diencephalon and opposing signaling gradients that dictated the positional commitments of organ and cell-type determination events, and provided the initial evidence of the roles of induced transcription factors as the """"""""molecular memory"""""""" of the transient signaling gradients. In this competitive renewal application, we propose to investigate the role of a series of transcription factors, including the members of the Six, Pax, GATA and Pitx families, and of specific co-activators, in nearly and late developmental events. The roles of specific protein-protein interactions, and co-activators and co-repressors, on their actions will be considered, and we propose to identify artificial target genes that mediate their biological actions. The role of signaling factors, including Shh, BMP, Wnt and retinoic acid, will be further explored using in vivo and in vitro approaches. The mechanism of Pit-1 lineage determination will be explored, with experiments directed at understanding the activation of the early Pit-1 gene enhancer, regulation of the Pit-1 lineage by Prop-1, and the mechanisms of control by Pit-1 of the terminal differentiation of three pituitary cell types. The allosteric effects of cognate Pit-1 DNA binding sites on these events will be explored structurally, and in vitro, and the role of co-repressor complex assembly will be investigated. This research proposal extends the approach used over the current grant period, which has been the most successful in our 22 years under this grant, combining biochemical and genetic approaches to investigate potentially important regulatory proteins, and systematically exploring the functional role of the novel proteins. We believe that these experimental approaches will provide insights into the intriguing problems of organ and cell-type differentiation, and cell-specific patterns of gene activation, with clear implications for human diseases that are caused by abnormalities of these developmental events.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK018477-29S1
Application #
6915375
Study Section
Biochemical Endocrinology Study Section (BCE)
Program Officer
Margolis, Ronald N
Project Start
1977-06-01
Project End
2006-02-28
Budget Start
2004-03-01
Budget End
2005-02-28
Support Year
29
Fiscal Year
2004
Total Cost
$159,296
Indirect Cost
Name
University of California San Diego
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Kim, Hong Sook; Tan, Yuliang; Ma, Wubin et al. (2018) Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells. Nature 556:510-514
Wang, Jianxun; Saijo, Kaoru; Skola, Dylan et al. (2018) Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. Proc Natl Acad Sci U S A 115:E244-E252
Tan, Yuliang; Jin, Chunyu; Ma, Wubin et al. (2018) Dismissal of RNA Polymerase II Underlies a Large Ligand-Induced Enhancer Decommissioning Program. Mol Cell 71:526-539.e8
Cardamone, Maria Dafne; Tanasa, Bogdan; Cederquist, Carly T et al. (2018) Mitochondrial Retrograde Signaling in Mammals Is Mediated by the Transcriptional Cofactor GPS2 via Direct Mitochondria-to-Nucleus Translocation. Mol Cell 69:757-772.e7
Yang, Feng; Ma, Qi; Liu, Zhijie et al. (2017) Glucocorticoid Receptor:MegaTrans Switching Mediates the Repression of an ER?-Regulated Transcriptional Program. Mol Cell 66:321-331.e6
Puc, Janusz; Aggarwal, Aneel K; Rosenfeld, Michael G (2017) Physiological functions of programmed DNA breaks in signal-induced transcription. Nat Rev Mol Cell Biol 18:471-476
Puc, Janusz; Kozbial, Piotr; Li, Wenbo et al. (2015) Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160:367-80
Li, Wenbo; Hu, Yiren; Oh, Soohwan et al. (2015) Condensin I and II Complexes License Full Estrogen Receptor ?-Dependent Enhancer Activation. Mol Cell 59:188-202
Wang, Jianxun; Telese, Francesca; Tan, Yuliang et al. (2015) LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci 18:1256-64
Telese, Francesca; Ma, Qi; Perez, Patricia Montilla et al. (2015) LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron 86:696-710

Showing the most recent 10 out of 61 publications