Skeletal muscle is a site of insulin resistance after denervation and in pathological states characterized by hyperinsulinemia, hyperglycemia and/or persistent elevations of plasma free fatty acid (FFA). This proposal will examine the hypothesis that insulin resistance in these situations involves alterations in a diacylglycerol-protein kinase C (DAG-PKC) signalling system. Based on preliminary data with an incubated soleus muscle preparation, we are proposing a model in which increases in DAG in these conditions (1) occur in a specific pool, (2) are predominantly due to DAG synthesis de novo and (3) are associated with an increase in PKC, and ultimately with alterations In DAG-PKC signalling that result in insulin resistance. The proposed studies will both test this paradigm and explore the biological role of the DAG-PKC signalling system in insulin action. Using incubated and perfused muscle preparations, we will carry out studies with the following aims: 1. To determine the mechanisms for the increase in DAG synthesis in insulin+glucose-stimulated and denervated soleus muscles. 2. To characterize the interrelationships between changes in DAG mass and synthesis and PKC activity. 3. To characterize the temporal relations between changes in DAG-PKC signalling and the development of insulin resistance. 4. To determine whether alterations in DAG-PKC affect insulin-mediated gene expression. 5. To compare DAG-PKC signalling in the soleus , a predominantly slow-twitch red muscle, and the extensor digitorum longus (EDL), a muscle composed mainly of white fibers. 6. To evaluate the effect of prior exercise, a maneuver that increases insulin sensitivity in muscle, on DAG-PKC signalling. These studies should provide novel information about the linkage between fuel-metabolism and signal transduction in skeletal muscle. They should also yield new insights into the role of DAG-PKC signalling in the pathogenesis of insulin resistance.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK019514-16
Application #
2137334
Study Section
Metabolism Study Section (MET)
Project Start
1979-06-01
Project End
1996-03-31
Budget Start
1994-07-01
Budget End
1996-03-31
Support Year
16
Fiscal Year
1994
Total Cost
Indirect Cost
Name
Boston Medical Center
Department
Type
DUNS #
005492160
City
Boston
State
MA
Country
United States
Zip Code
02118
Weikel, Karen A; Ruderman, Neil B; Cacicedo, José M (2016) Unraveling the actions of AMP-activated protein kinase in metabolic diseases: Systemic to molecular insights. Metabolism 65:634-45
Pepin, Émilie; Al-Mass, Anfal; Attané, Camille et al. (2016) Pancreatic ?-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase C?, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression. PLoS One 11:e0153017
Mugabo, Yves; Zhao, Shangang; Seifried, Annegrit et al. (2016) Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic ?-cells and hepatocytes. Proc Natl Acad Sci U S A 113:E430-9
Weikel, Karen A; Cacicedo, José M; Ruderman, Neil B et al. (2016) Knockdown of GSK3? increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep 36:
Coughlan, Kimberly A; Valentine, Rudy J; Sudit, Bella S et al. (2016) PKD1 Inhibits AMPK?2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells. J Biol Chem 291:5664-75
Xu, X Julia; Apovian, Caroline; Hess, Donald et al. (2015) Improved Insulin Sensitivity 3 Months After RYGB Surgery Is Associated With Increased Subcutaneous Adipose Tissue AMPK Activity and Decreased Oxidative Stress. Diabetes 64:3155-9
Nolan, Christopher J; Ruderman, Neil B; Kahn, Steven E et al. (2015) Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes 64:673-86
Coughlan, Kimberly A; Balon, Thomas W; Valentine, Rudy J et al. (2015) Nutrient Excess and AMPK Downregulation in Incubated Skeletal Muscle and Muscle of Glucose Infused Rats. PLoS One 10:e0127388
Doménech, Elena; Maestre, Carolina; Esteban-Martínez, Lorena et al. (2015) AMPK and PFKFB3 mediate glycolysis and survival in response to mitophagy during mitotic arrest. Nat Cell Biol 17:1304-16
Martínez de Morentin, Pablo B; Lage, Ricardo; González-García, Ismael et al. (2015) Pregnancy induces resistance to the anorectic effect of hypothalamic malonyl-CoA and the thermogenic effect of hypothalamic AMPK inhibition in female rats. Endocrinology 156:947-60

Showing the most recent 10 out of 92 publications