The overall objective of the proposed research is to investigate the biochemical properties, inborn errors and molecular genetics of three human heme biosynthetic enzymes, Delta-aminolevulinic acid dehydratase (ALA-D), porphobilinogen deaminase (PBG-D) and uroporphyrinogen III-cosynthase (URO III-CoS). Using methods developed in this laboratory, milligram quantities of human ALA-D, PBG-D and URO III-CoS will be purified to homogeneity for 1) characterization of their physicokinetic properties and reaction mechanisms, 2) production of polyclonal and monoclonal antibodies, and 3) determination of their N-terminal and peptide fragment amino acid sequences. Monoclonal antibodies will be used as affinity ligands for the rapid purification of each enzyme and to characterize the recently recognized human ALA-D polymorphic isozymes and the defective human enzymes in acute intermittent porphyria and congenital erythropoietic porphyria. The effect of lead and other metals on the physicokinetic properties of the ALA-D isozymes also will be determined. The clinical, pathologic and biochemical abnormalities in the newly discovered feline analogue of human acute intermittent porphyria will be characterized. In addition, this animal model will permit the unique opportunity to evaluate the pathogenesis of porphyric attacks, the porphyrinogenic potential of various drugs, as well as the biochemical effectiveness of therapeutic modalities (e.g., hematin, folate, glucose). Recombinant DNA techniques will be employed to isolate full length cDNA and genomic sequences encoding the three human heme biosynthetic enzymes and feline PBG-D for 1) characterization of their structure and organization, and 2) investigation of the molecular nature of the genetic defects in these porphyric disorders. Somatic cell and in situ hybridization techniques will be used to assign the structural genes for the human enzymes to specific sub-chromosomal regions. Using selected vectors, gene transfer experiments designed to correct the metabolic defect will be conducted in the feline porphyric model. These studies should provide increased understanding of the biochemical and molecular genetic defects and the basis for precise diagnosis and effective therapy of these human porphyrias.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK026824-07
Application #
3228044
Study Section
(SSS)
Project Start
1980-04-01
Project End
1988-03-31
Budget Start
1986-04-01
Budget End
1987-03-31
Support Year
7
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10029
Salameh, H; Sarairah, H; Rizwan, M et al. (2018) Relapse of porphyria cutanea tarda after treatment with phlebotomy or 4-aminoquinoline antimalarials: a meta-analysis. Br J Dermatol 179:1351-1357
Clavero, Sonia; Ahuja, Yuri; Bishop, David F et al. (2013) Diagnosis of feline acute intermittent porphyria presenting with erythrodontia requires molecular analyses. Vet J 198:720-2
Balwani, Manisha; Desnick, Robert J (2012) The porphyrias: advances in diagnosis and treatment. Hematology Am Soc Hematol Educ Program 2012:19-27
Balwani, Manisha; Desnick, Robert J (2012) The porphyrias: advances in diagnosis and treatment. Blood 120:4496-504
Hasanoglu, Alev; Balwani, Manisha; Kasapkara, Ci?dem S et al. (2011) Harderoporphyria due to homozygosity for coproporphyrinogen oxidase missense mutation H327R. J Inherit Metab Dis 34:225-31
Machaczka, Maciej; Klimkowska, Monika; Regenthal, Sofie et al. (2011) Gaucher disease with foamy transformed macrophages and erythrophagocytic activity. J Inherit Metab Dis 34:233-5
Clavero, Sonia; Bishop, David F; Giger, Urs et al. (2010) Feline congenital erythropoietic porphyria: two homozygous UROS missense mutations cause the enzyme deficiency and porphyrin accumulation. Mol Med 16:381-8
Cantatore-Francis, Julie L; Cohen-Pfeffer, Jessica; Balwani, Manisha et al. (2010) Hepatoerythropoietic porphyria misdiagnosed as child abuse: cutaneous, arthritic, and hematologic manifestations in siblings with a novel UROD mutation. Arch Dermatol 146:529-33
Yasuda, Makiko; Bishop, David F; Fowkes, Mary et al. (2010) AAV8-mediated gene therapy prevents induced biochemical attacks of acute intermittent porphyria and improves neuromotor function. Mol Ther 18:17-22
Bishop, David F; Schneider-Yin, Xiaoye; Clavero, Sonia et al. (2010) Congenital erythropoietic porphyria: a novel uroporphyrinogen III synthase branchpoint mutation reveals underlying wild-type alternatively spliced transcripts. Blood 115:1062-9

Showing the most recent 10 out of 56 publications