Anion transport: The ping-pong model for the mechanism whereby the band 3 protein mediates anion exchange in human erythrocytes postulates that a single transport site can oscillate between two conformations, one facing the inside of the cell and the other facing the outside. To test this model, chloride gradients will be imposed across the membrane to determine if they have the predicted effects on the inhibitory potency of chemical probes, which bind to specific functional sites of the transport system. These results will reveal the nature of any intrinsic asymmetry in the orientation of the transport sites, as well as possible effects of the conformational change on other band 3 sites and on band 3-associated lipids. The relationship of net anion flow to the anion exchange system will also be investigated, and a model for the mechanism of net anion flow will be tested. Band 3 biosynthesis: We plan to look for synthesis of the band 3 protein in late-stage erythroleukemic cells and early stage reticulocytes, using transport and chemical labelling techniques, with the aim of setting-up an experimental system for studying band 3 synthesis. Erythroleukemic cell induction: We plan to investigate the relationship between changes in membrane cation transport and the alterations of cell volume and hemoglobin gene expression which occur when either Friend mouse or human K562 erythroleukemic cells are exposed to various inducing agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK027495-08
Application #
3228345
Study Section
Hematology Subcommittee 2 (HEM)
Project Start
1980-07-01
Project End
1990-06-30
Budget Start
1987-07-01
Budget End
1988-06-30
Support Year
8
Fiscal Year
1987
Total Cost
Indirect Cost
Name
University of Rochester
Department
Type
School of Medicine & Dentistry
DUNS #
208469486
City
Rochester
State
NY
Country
United States
Zip Code
14627
Kang, Di-Cody; Venkataraman, Prahnesh A; Dumont, Mark E et al. (2011) Oligomeric state of the oxalate transporter, OxlT. Biochemistry 50:8445-53
Ghosh, Arko; Keng, Peter C; Knauf, Philip A (2007) Hypertonicity induced apoptosis in HL-60 cells in the presence of intracellular potassium. Apoptosis 12:1281-8
Lesoine, J F; Holmberg, B; Maloney, P et al. (2006) Development of an spFRET method to measure structure changes in ion exchange proteins. Acta Physiol (Oxf) 187:141-7
Pal, Prithwish; Lebedev, Dmitry; Salim, Sara et al. (2006) Substrates induce conformational changes in human anion exchanger 1 (hAE1) as observed by fluorescence resonance energy transfer. Biochemistry 45:6279-95
Pal, Prithwish; Holmberg, Brian E; Knauf, Philip A (2005) Conformational changes in the cytoplasmic domain of human anion exchanger 1 revealed by luminescence resonance energy transfer. Biochemistry 44:13638-49
Knauf, Philip A; Law, Foon-Yee; Leung, Tze-Wah Vivian et al. (2004) Relocation of the disulfonic stilbene sites of AE1 (band 3) on the basis of fluorescence energy transfer measurements. Biochemistry 43:11917-31
Knauf, Philip A; Pal, Prithwish (2004) Use of luminescence resonance energy transfer to measure distances in the AE1 anion exchange protein dimer. Blood Cells Mol Dis 32:360-5
Knauf, Philip A; Law, Foon-Yee; Leung, Tze-Wah Vivian et al. (2002) Substrate-dependent reversal of anion transport site orientation in the human red blood cell anion-exchange protein, AE1. Proc Natl Acad Sci U S A 99:10861-4
Knauf, P A; Raha, N M; Spinelli, L J (2000) The noncompetitive inhibitor WW781 senses changes in erythrocyte anion exchanger (AE1) transport site conformation and substrate binding. J Gen Physiol 115:159-73
Bahar, S; Gunter, C T; Wu, C et al. (1999) Persistence of external chloride and DIDS binding after chemical modification of Glu-681 in human band 3. Am J Physiol 277:C791-9

Showing the most recent 10 out of 42 publications