The long-term objective of this research is to understand the biochemical and genetic mechanisms regulating human purine nucleotide synthesis. Studies of inherited enzyme defects underlying excessive purine nucleotide and uric acid production in some families with gout have contributed to concepts of the control of rates of purine synthesis de novo. One such defect is superactivity of phosphoribosylpyrophosphate (PRPP) synthetase (PRS), the enzyme catalyzing synthesis of the regulatory substrate PRPP. The proposed investigations focus on expression of two X chromosome-linked human (h) genes, hPRPS1 and hPRPS2, which encode highly homologous PRS isoforms, hPRS1 and hPRS2, respectively.
The specific aims are: 1) to delineate the structural and regulatory determinants of normal hPRPS1 and hPRPS2 gene expression; and 2) to define the precise genetic defects and resulting aberrant molecular mechanisms underlying X-linked catalytic superactivity of hPRS. In order to pursue these specific aims, molecular genetic, protein chemical, and enzyme analytical methods will be employed. The structure of hPRPS1 and hPRPS2 promoter and adjacent 5= flanking sequences will be defined by sequencing of cloned PRPS genomic DNA. hPRPS promoter function and cis-acting regulatory elements in the 5= flanking DNAs will be studied in murine and human cell lines transfected with hPRPS promoter region reporter gene plasmid constructs. Pertinent DNA sequences will be tested for nuclear protein and specific transcription factor binding by gel mobility shift assays and, where appropriate, DNA footprinting and site-directed mutation will be utilized to define and delimit key protein-binding sequences in the DNA. PRPS gene promoter activities will be correlated with PRS transcript levels, PRS isoform contents and activities, and PRPP and purine nucleotide synthesis in differentiated human cell lines representative of tissues showing differential expression of PRPS1 and/or PRPS2 transcript abundance. The influences of growth promoting agents, viral transformation, and cell cycle traversal on hPRPS promoter activities and mouse PRS transcript and isoform levels will be tested in murine cell lines. These studies are aimed at: defining models for cell-specific and gene-differential regulation of PRPS gene expression; identifying where in genetic information transfer control occurs; and ascertaining the molecular mechanisms involved. Altered pretranslational regulation of hPRPS1 expression in PRS catalytic superactivity may reflect transcriptional dysregulation due to structural and/or functional defects in the control of the PRPS1 promoter. This hypothesis will be tested by comparing the structure of promoter regions of affected patients and normal individuals and by measuring the respective PRPS1 promoter activities in murine cells and in normal and patient fibroblasts. Finally, post-translational control of hPRS isoform expression by specific interaction with a PRS-associated 39kDa protein (PAP39) will be examined in studies assessing the specificity and functional consequences of the PAP39-PRS isoform complex and the results of selective disruption of the complex and its reconstitution from recombinant components.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK028554-20
Application #
6124776
Study Section
Medical Biochemistry Study Section (MEDB)
Program Officer
Mckeon, Catherine T
Project Start
1980-09-01
Project End
2001-11-30
Budget Start
1999-12-01
Budget End
2000-11-30
Support Year
20
Fiscal Year
2000
Total Cost
$284,972
Indirect Cost
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Garcia-Pavia, Pablo; Torres, Rosa J; Rivero, Manuel et al. (2003) Phosphoribosylpyrophosphate synthetase overactivity as a cause of uric acid overproduction in a young woman. Arthritis Rheum 48:2036-41
Becker, M A (2001) Phosphoribosylpyrophosphate synthetase and the regulation of phosphoribosylpyrophosphate production in human cells. Prog Nucleic Acid Res Mol Biol 69:115-48
Becker, M A; Ahmed, M (2000) Cell type-specific differential expression of human PRPP synthetase (PRPS) genes. Adv Exp Med Biol 486:10-May
Ahmed, M; Taylor, W; Smith, P R et al. (1999) Accelerated transcription of PRPS1 in X-linked overactivity of normal human phosphoribosylpyrophosphate synthetase. J Biol Chem 274:7482-8
Becker, M A; Taylor, W; Smith, P R et al. (1998) Regulation of human PRS isoform expression. Adv Exp Med Biol 431:215-20
Becker, M A; Taylor, W; Smith, P R et al. (1996) Overexpression of the normal phosphoribosylpyrophosphate synthetase 1 isoform underlies catalytic superactivity of human phosphoribosylpyrophosphate synthetase. J Biol Chem 271:19894-9
Becker, M A; Smith, P R; Taylor, W et al. (1995) The genetic and functional basis of purine nucleotide feedback-resistant phosphoribosylpyrophosphate synthetase superactivity. J Clin Invest 96:2133-41
Fry, D W; Becker, M A; Switzer, R L (1995) Inhibition of human 5-phosphoribosyl-1-pyrophosphate synthetase by 4-amino-8-(beta-D-ribofuranosylamino)-pyrimido[5,4-d]pyrimidine-5'- monophosphate: evidence for interaction at the ADP allosteric site. Mol Pharmacol 47:810-5
Becker, M A; Nosal, J M; Switzer, R L et al. (1994) Point mutations in PRPS1, the gene encoding the PRPP synthetase (PRS) 1 isoform, underlie X-linked PRS superactivity associated with purine nucleotide inhibitor-resistance. Adv Exp Med Biol 370:707-10
Roessler, B J; Nosal, J M; Smith, P R et al. (1993) Human X-linked phosphoribosylpyrophosphate synthetase superactivity is associated with distinct point mutations in the PRPS1 gene. J Biol Chem 268:26476-81

Showing the most recent 10 out of 20 publications