Kidney stone disease is a substantial health problem associated with significant pain, suffering, and economic costs. 5% to 15% of the population will have a symptomatic episode of a stone within the urinary tract by the age of 70 and at least 50% of these individuals will have recurrent stone disease. This grant focuses on the attachment of urinary crystals to injured kidney papillary tip epithelium. Our investigations are driven by the working hypothesis that crystal attachment to papillary epithelium requires cell/tissue injury that includes loss of cell plasma lipid asymmetry and/or loss of cell polarity. Two specific inner medullary collecting duct (IMCD) cell injury models will be employed. (i) the loss of plasma membrane lipid asymmetry resulting in the presentation of phosphatidylserine from the inner to the outer leaflet of the cell plasma membrane, and (ii) the loss of cell polarity as a result of intracellular tight junction breakdown resulting in the mixing of plasma membrane basolateral and apical membrane components to an altered luminal cell surface. In both models, injury leads to altered apical membrane composition/structure, and more importantly converts a non-crystal attaching cell into one that does attach crystals. The proposed studies are divided into three Specific Aims that test three specific hypotheses. They will utilize established cell culture and isolated perfused tubule systems and a hyperoxaluric animal model of stone disease. Investigations will be limited to the four most common crystalline components of human urinary tract stones, namely calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD), basic calcium phosphate (apatite, AP), and uric acid (UA) crystals.
The Specific Aims are:
Specific Aim I : To determine in injured papillary collecting duct cells the influence of urinary environment on the molecular nature of crystal attachment in molecules on the altered plasma membrane surface.
Specific Aim II : To determine the relative susceptibility of two specific nephron segments to defined injury and subsequent attachment of crystals.
Specific Aim III : To determine in an animal model if mild chronic hyperoxaluria produces the localized nephron cell injury that precedes crystal attachment during supersaturation conditions and episodes of crystalluria.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK030579-19
Application #
6824092
Study Section
Special Emphasis Panel (ZRG1-UROL (01))
Program Officer
Rasooly, Rebekah S
Project Start
1982-07-01
Project End
2006-07-31
Budget Start
2004-12-01
Budget End
2006-07-31
Support Year
19
Fiscal Year
2005
Total Cost
$244,126
Indirect Cost
Name
Medical College of Wisconsin
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Yamaguchi, Satoshi; Wiessner, John H; Hasegawa, Andrew T et al. (2005) Study of a rat model for calcium oxalate crystal formation without severe renal damage in selected conditions. Int J Urol 12:290-8
Newland, M Christopher; Reile, Phyllis A; Sartin, Eva A et al. (2005) Urolithiasis in rats consuming a dl bitartrate form of choline in a purified diet. Comp Med 55:354-67
Wiessner, John H; Hung, Linda Y; Mandel, Neil S (2003) Crystal attachment to injured renal collecting duct cells: influence of urine proteins and pH. Kidney Int 63:1313-20
Yamaguchi, Satoshi; Wiessner, John; Hasegawa, Andrew et al. (2002) Calcium oxalate monohydrate crystal binding substance produced from Madin-Darby canine kidney cells. Int J Urol 9:501-8
Keim, A L; Chi, M M; Moley, K H (2001) Hyperglycemia-induced apoptotic cell death in the mouse blastocyst is dependent on expression of p53. Mol Reprod Dev 60:214-24
Chi, M M; Schlein, A L; Moley, K H (2000) High insulin-like growth factor 1 (IGF-1) and insulin concentrations trigger apoptosis in the mouse blastocyst via down-regulation of the IGF-1 receptor. Endocrinology 141:4784-92
Carayannopoulos, M O; Chi, M M; Cui, Y et al. (2000) GLUT8 is a glucose transporter responsible for insulin-stimulated glucose uptake in the blastocyst. Proc Natl Acad Sci U S A 97:7313-8
Chi, M M; Pingsterhaus, J; Carayannopoulos, M et al. (2000) Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J Biol Chem 275:40252-7
Chini, E N; Liang, M; Dousa, T P (1998) Differential effect of pH upon cyclic-ADP-ribose and nicotinate-adenine dinucleotide phosphate-induced Ca2+ release systems. Biochem J 335 ( Pt 3):499-504
Bigelow, M W; Wiessner, J H; Kleinman, J G et al. (1998) Calcium oxalate crystal attachment to cultured kidney epithelial cell lines. J Urol 160:1528-32

Showing the most recent 10 out of 28 publications