Aquaporins (AQPs) are membrane water channels expressed in many mammalian tissues that carry out fluid transport. This competitive renewal builds on our discoveries of three novel, unanticipated AQP functions - cell migration, cell proliferation and neuroexcitation - each with the potential to yield new therapies for human diseases. The proposed studies utilize cell and mouse models of AQP gene deletion, knockdown and overexpression, and state-of-the-art biophysical methods.
Aim 1 will elucidate cellular mechanisms of AQP-facilitated cell migration. Biophysical studies will be done to test the hypothesis that AQP expression in membrane protrusions in migrating cells facilitates water influx and lamellipodial dynamics.
Aim 2 will elucidate cellular mechanisms of AQP3-facilitated cell proliferation. The hypothesis will be tested that AQP3-faciliated glycerol transport alters cellular glycerol metabolism, which is a key determinant of cellular ATP/energetics, MAPK signaling and biosynthesis.
Aim 3 will elucidate the cellular mechanisms by which AQP4 facilitates the neurotransmission function of electrically excitable cells. Biophysical methods, including novel K+-sensitive fluorescent indicators developed by our lab, will be used to test our working hypothesis that AQP4 expression facilitates K+ reuptake by glial cells following neuroexcitation by an indirect osmotic mechanism involving solute-solvent coupling. In addition to establishing new paradigms on the physiological functions of AQPs, the proposed research will provide a rational basis for identification of AQP modulators for tumor therapy, accelerating wound repair, and medical management of epilepsy.

Public Health Relevance

The aquaporins are a family of membrane transporters of water and glycerol. This proposal will establish cellular mechanisms by which aquaporins are involved in cell migration, cell proliferation and neuroexcitation. The outcomes of this research will include improved understanding and potential new therapies for tumors, wound healing and epilepsy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK035124-23A2
Application #
8092424
Study Section
Cellular and Molecular Biology of the Kidney Study Section (CMBK)
Program Officer
Ketchum, Christian J
Project Start
1986-01-01
Project End
2015-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
23
Fiscal Year
2011
Total Cost
$386,250
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Smith, Alex J; Verkman, Alan S (2018) The ""glymphatic"" mechanism for solute clearance in Alzheimer's disease: game changer or unproven speculation? FASEB J 32:543-551
Tradtrantip, Lukmanee; Felix, Christian M; Spirig, Rolf et al. (2018) Recombinant IgG1 Fc hexamers block cytotoxicity and pathological changes in experimental in vitro and rat models of neuromyelitis optica. Neuropharmacology 133:345-353
Agbani, Ejaife O; Williams, Christopher M; Li, Yong et al. (2018) Aquaporin-1 regulates platelet procoagulant membrane dynamics and in vivo thrombosis. JCI Insight 3:
Cil, Onur; Phuan, Puay-Wah; Son, Jung-Ho et al. (2017) Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation. Transl Res 182:14-26.e4
Jin, Byung-Ju; Verkman, A S (2017) Microfluidic platform for rapid measurement of transepithelial water transport. Lab Chip 17:887-895
Felix, Christian M; Lee, Sujin; Levin, Marc H et al. (2017) Pro-Secretory Activity and Pharmacology in Rabbits of an Aminophenyl-1,3,5-Triazine CFTR Activator for Dry Eye Disorders. Invest Ophthalmol Vis Sci 58:4506-4513
Yao, Xiaoming; Verkman, Alan S (2017) Complement regulator CD59 prevents peripheral organ injury in rats made seropositive for neuromyelitis optica immunoglobulin G. Acta Neuropathol Commun 5:57
Thiagarajah, Jay R; Chang, Jeffrey; Goettel, Jeremy A et al. (2017) Aquaporin-3 mediates hydrogen peroxide-dependent responses to environmental stress in colonic epithelia. Proc Natl Acad Sci U S A 114:568-573
Verkman, Alan S; Smith, Alex J; Phuan, Puay-Wah et al. (2017) The aquaporin-4 water channel as a potential drug target in neurological disorders. Expert Opin Ther Targets 21:1161-1170
Yao, Xiaoming; Verkman, Alan S (2017) Marked central nervous system pathology in CD59 knockout rats following passive transfer of Neuromyelitis optica immunoglobulin G. Acta Neuropathol Commun 5:15

Showing the most recent 10 out of 436 publications