The most straightforward tests of hepatic involvement in the control of food intake come from experiments that infuse nutrients directly into the hepatic-portal (HP) vein. Previous studies have found that glucose infusions decrease, increase or have no effect on feeding. A systematic investigation of the conditions responsible for these different results has not been attempted. We have begun to investigate some of the parameters involved, and we propose here to continue this work. A parametric approach will be taken, consisting of three series of experiments. Each series will contain parallel behavioral experiments, with food intake and meal patterns as dependent variables, and metabolic experiments, which will examine the physiological effects of the infusions. The following issues are addressed: 1) The influence of the quantity of glucose infused into the HP vein in determining hepatic effects on feeding and metabolism. 2) The influence of HP glucose relative to other carbohydrates in determining hepatic effects on feeding and metabolism. 3) The influence of hepatic innervation in determining the ingestive and metabolic effects of HP nutrient infusions. This work is important because it will provide information about the hepatic mechanisms involved in feeding regulation and the conditions needed for their expression.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK036339-01
Application #
3234672
Study Section
Biopsychology Study Section (BPO)
Project Start
1986-01-01
Project End
1988-12-31
Budget Start
1986-01-01
Budget End
1986-12-31
Support Year
1
Fiscal Year
1986
Total Cost
Indirect Cost
Name
Monell Chemical Senses Center
Department
Type
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Horn, Charles C; Friedman, Mark I (2005) Thoracic cross-over pathways of the rat vagal trunks. Brain Res 1060:153-61
Horn, Charles C; Richardson, Eric J; Andrews, Paul L R et al. (2004) Differential effects on gastrointestinal and hepatic vagal afferent fibers in the rat by the anti-cancer agent cisplatin. Auton Neurosci 115:74-81
Horn, Charles C; Ji, Hong; Friedman, Mark I (2004) Etomoxir, a fatty acid oxidation inhibitor, increases food intake and reduces hepatic energy status in rats. Physiol Behav 81:157-62
Horn, Charles C; Friedman, Mark I (2004) Separation of hepatic and gastrointestinal signals from the common ""hepatic"" branch of the vagus. Am J Physiol Regul Integr Comp Physiol 287:R120-6
Horn, Charles C; Friedman, Mark I (2003) Detection of single unit activity from the rat vagus using cluster analysis of principal components. J Neurosci Methods 122:141-7
Horn, C C; Tordoff, M G; Friedman, M I (2001) Role of vagal afferent innervation in feeding and brain Fos expression produced by metabolic inhibitors. Brain Res 919:198-206
Bachmanov, A A; Reed, D R; Tordoff, M G et al. (2001) Nutrient preference and diet-induced adiposity in C57BL/6ByJ and 129P3/J mice. Physiol Behav 72:603-13
Friedman, M I; Harris, R B; Ji, H et al. (1999) Fatty acid oxidation affects food intake by altering hepatic energy status. Am J Physiol 276:R1046-53
Horn, C C; Addis, A; Friedman, M I (1999) Neural substrate for an integrated metabolic control of feeding behavior. Am J Physiol 276:R113-9
Horn, C C; Friedman, M I (1998) Metabolic inhibition increases feeding and brain Fos-like immunoreactivity as a function of diet. Am J Physiol 275:R448-59

Showing the most recent 10 out of 37 publications