Neuropeptide Y (NPY) has recently been identified in diverse sites in the rat brain. Our studies show that NPY stimulates feeding in rats. The major objectives of this proposal are to understand further where and how NPY acts in the brain to modulate feeding and drinking behavior. Experiments are designed to determine a dose response effect of NPY, identify the specific central sites of NPY action and elucidate the interplay between NPY and adrenergic neurons. The major techniques are: intraventricular and intracerebral injection or infusion of NPY, adrenalectomy, hypophysectomy and use of pharmacologic drugs which block neurotransmitter synthesis or adrenergic receptors. It is hoped that these investigations will further our understanding of the central control of ingestive behavior in rats.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK037273-03
Application #
3236105
Study Section
Biopsychology Study Section (BPO)
Project Start
1986-06-01
Project End
1989-05-31
Budget Start
1988-06-01
Budget End
1989-05-31
Support Year
3
Fiscal Year
1988
Total Cost
Indirect Cost
Name
University of Florida
Department
Type
Schools of Medicine
DUNS #
073130411
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Turner, Russell T; Kalra, Satya P; Wong, Carmen P et al. (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28:22-34
Iwaniec, Urszula T; Boghossian, Stéphane; Trevisiol, Cynthia H et al. (2011) Hypothalamic leptin gene therapy prevents weight gain without long-term detrimental effects on bone in growing and skeletally mature female rats. J Bone Miner Res 26:1506-16
Kalra, S P (2011) Pivotal role of leptin-hypothalamus signaling in the etiology of diabetes uncovered by gene therapy: a new therapeutic intervention? Gene Ther 18:319-25
Jackson, M A; Iwaniec, U T; Turner, R T et al. (2011) Effects of increased hypothalamic leptin gene expression on ovariectomy-induced bone loss in rats. Peptides 32:1575-80
Kalra, Satya P; Kalra, Pushpa S (2010) Neuroendocrine control of energy homeostasis: update on new insights. Prog Brain Res 181:17-33
Kalra, Satya P; Dube, Michael G; Iwaniec, Urszula T (2009) Leptin increases osteoblast-specific osteocalcin release through a hypothalamic relay. Peptides 30:967-73
Kojima, Shinya; Asakawa, Akihiro; Amitani, Haruka et al. (2009) Central leptin gene therapy, a substitute for insulin therapy to ameliorate hyperglycemia and hyperphagia, and promote survival in insulin-deficient diabetic mice. Peptides 30:962-6
Kalra, Satya P (2009) Central leptin gene therapy ameliorates diabetes type 1 and 2 through two independent hypothalamic relays; a benefit beyond weight and appetite regulation. Peptides 30:1957-63
Iwaniec, U T; Dube, M G; Boghossian, S et al. (2009) Body mass influences cortical bone mass independent of leptin signaling. Bone 44:404-12
Kalra, Satya P (2008) Disruption in the leptin-NPY link underlies the pandemic of diabetes and metabolic syndrome: new therapeutic approaches. Nutrition 24:820-6

Showing the most recent 10 out of 92 publications