Decreased intracellular utilization of glucose and fatty acids (glucoprivation and lipoprivation, respectively) constitute separate and distinct signals for stimulation of food intake. Our previous work indicates that feeding elicited by lipoprivation is mediated by abdominal vagal sensory neurons, whereas glucoprivic feeding relies on receptors in the brain. Neurons and/or terminals located in the area postrema/nucleus of the solitary tract (AP/NTS) region participate in both controls. However, our recent results suggest that different AP/NTS regions are involved in each control. Furthermore, our results indicate that a subpopulation of lateral parabrachial and amygdaloid neurons also participate in lipoprivic feeding. The first two specific aims will use a combination of anatomical, chemical and behavioral approaches to define the sites of peripheral metabolic receptors for lipoprivic feeding and to trace the connections of central neurons involved in the two controls. The third specific aim will examine the susceptibility of glucoprivic and lipoprivic signals for feeding to modulation by alternative metabolic fuels and by changes in metabolic rate.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK040498-05
Application #
3240821
Study Section
Neurology B Subcommittee 2 (NEUB)
Project Start
1989-04-01
Project End
1995-03-31
Budget Start
1993-04-01
Budget End
1994-03-31
Support Year
5
Fiscal Year
1993
Total Cost
Indirect Cost
Name
Washington State University
Department
Type
Schools of Veterinary Medicine
DUNS #
041485301
City
Pullman
State
WA
Country
United States
Zip Code
99164
Li, Ai-Jun; Wang, Qing; Dinh, Thu T et al. (2016) Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 310:R724-32
Li, Ai-Jun; Wang, Qing; Davis, Hana et al. (2015) Orexin-A enhances feeding in male rats by activating hindbrain catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 309:R358-67
Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M et al. (2015) Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats. Endocrinology 156:2807-20
Li, Ai-Jun; Wang, Qing; Dinh, Thu T et al. (2014) Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons. Am J Physiol Regul Integr Comp Physiol 306:R257-64
Darling, Rebecca A; Zhao, Huan; Kinch, Dallas et al. (2014) Mercaptoacetate and fatty acids exert direct and antagonistic effects on nodose neurons via GPR40 fatty acid receptors. Am J Physiol Regul Integr Comp Physiol 307:R35-43
Wiater, Michael F; Li, Ai-Jun; Dinh, Thu T et al. (2013) Leptin-sensitive neurons in the arcuate nucleus integrate activity and temperature circadian rhythms and anticipatory responses to food restriction. Am J Physiol Regul Integr Comp Physiol 305:R949-60
Li, Ai-Jun; Wang, Qing; Dinh, Thu T et al. (2013) Hindbrain catecholamine neurons control rapid switching of metabolic substrate use during glucoprivation in male rats. Endocrinology 154:4570-9
Routh, Vanessa H; Donovan, Casey M; Ritter, Sue (2012) 2. Hypoglycemia Detection. Transl Endocrinol Metab 3:47-87
Li, Ai-Jun; Wiater, Michael F; Oostrom, Marjolein T et al. (2012) Leptin-sensitive neurons in the arcuate nuclei contribute to endogenous feeding rhythms. Am J Physiol Regul Integr Comp Physiol 302:R1313-26
Wiater, M F; Mukherjee, S; Li, A-J et al. (2011) Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Physiol Regul Integr Comp Physiol 301:R1569-83

Showing the most recent 10 out of 43 publications