During the past decade, we and others have made tremendous progress in understanding the long-term regulation of urea transport proteins. The overall goals of the next funding period are to investigate whether vasopressin increases the apical plasma membrane accumulation of UT-A1, to determine the vasopressin- stimulated signaling pathway(s) that increase UT-A1 accumulation, and to study the retrieval, turnover, and degradation of UT-A1. Urea and water permeabilities often change together, but there are situations when they are regulated independently of 1 another in the IMCD. Our proposed studies will provide insights into an intriguing biological question: how does vasopressin, acting through a single receptor, the V2-receptor, regulate urea permeability independently of water permeability in a single nephron segment, the terminal IMCD and, indeed, probably independently within the same cells? HYPOTHESIS I. Vasopressin rapidly increases UT-A1 accumulation in the apical plasma membrane.
Specific Aim 1. Determine whether vasopressin increases UT-A1 accumulation in the apical plasma membrane through the V2-vasopressin receptor. Rationale: Our preliminary data show that acute vasopressin administration increases the amount of UT-A1 in the plasma membrane.
Specific Aim 2. Determine which cyclic AMP pathway regulates UT-A1 accumulation in the plasma membrane. Rationale: Our preliminary data shows that activation of Epac, a novel cAMP-dependent but PKA-independent pathway, increases UT-A1 accumulation in the IMCD plasma membrane, but does not change AQP2. This data suggests that vasopressin's ability to independently regulate urea and water results, at least in part, from activation of different cAMP-dependent signaling pathways in IMCD cells. HYPOTHESIS II. Vasopressin regulates UT-A1 retrieval and/or degradation.
Specific Aim 3. Determine the functional half-life of UT-A1 in the apical plasma membrane and the cellular systems responsible for UT-A1 retrieval and/or degradation. Rationale: Our preliminary data in UT-A1- MDCK cells shows that: 1) UT-A1 is a ubiquitinated protein in rat inner medulla and in UT-A1-MDCK cells; and 2) pre-treatment with a proteasome inhibitor produces a marked increase in urea flux (function), UT-A1 protein abundance, and the sizes of biotinylated UT-A1. This data suggests that ubiquitination may regulate retrieval of UT-A1 from the plasma membrane and target it for degradation in the proteosome. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK041707-14A2
Application #
7197413
Study Section
Cellular and Molecular Biology of the Kidney Study Section (CMBK)
Program Officer
Ketchum, Christian J
Project Start
1989-08-01
Project End
2011-12-31
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
14
Fiscal Year
2007
Total Cost
$313,650
Indirect Cost
Name
Emory University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Hinze, Christian; Ruffert, Janett; Walentin, Katharina et al. (2018) GRHL2 Is Required for Collecting Duct Epithelial Barrier Function and Renal Osmoregulation. J Am Soc Nephrol 29:857-868
Kenig-Kozlovsky, Yael; Scott, Rizaldy P; Onay, Tuncer et al. (2018) Ascending Vasa Recta Are Angiopoietin/Tie2-Dependent Lymphatic-Like Vessels. J Am Soc Nephrol 29:1097-1107
Okazaki, Yuri; Nakamura, Keishi; Takeda, Shuto et al. (2018) GDE5 Inhibition Accumulates Intracellular Glycerophosphocholine and Suppresses Adipogenesis at a Mitotic Clonal Expansion Stage. Am J Physiol Cell Physiol :
Kitada, Kento; Daub, Steffen; Zhang, Yahua et al. (2017) High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation. J Clin Invest 127:1944-1959
Hou, Ruida; Alemozaffar, Mehrdad; Yang, Baoxue et al. (2017) Identification of a Novel UT-B Urea Transporter in Human Urothelial Cancer. Front Physiol 8:245
Klein, Janet D; Sands, Jeff M (2016) Urea transport and clinical potential of urearetics. Curr Opin Nephrol Hypertens 25:444-51
Keller, Raymond W; Bailey, James L; Wang, Yanhua et al. (2016) Urea transporters and sweat response to uremia. Physiol Rep 4:
Sands, Jeff M; Klein, Janet D (2016) Physiological insights into novel therapies for nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 311:F1149-F1152
Klein, Janet D; Wang, Yanhua; Mistry, Abinash et al. (2016) Transgenic Restoration of Urea Transporter A1 Confers Maximal Urinary Concentration in the Absence of Urea Transporter A3. J Am Soc Nephrol 27:1448-55
Wang, Juan; Wang, Xiaonan H; Wang, Haidong et al. (2016) Urea Transporter B and MicroRNA-200c Differ in Kidney Outer Versus Inner Medulla Following Dehydration. Am J Med Sci 352:296-301

Showing the most recent 10 out of 108 publications