Folylpolyglutamates are coenzymes in, and potential regulators of, a large number of reactions known collectively as one carbon (1-C) metabolism. These reactions which include the metabolic cycles for the synthesis of thymidylate, purines and the amino acids, methionine, serine and glycine, are compartmentalized in the mitochondria and cytosol of cells. This application is for the continuation of a series of studies aimed at investigating the control of the 1-C metabolism in cells and animals, and the role that mitochondrial folate metabolism plays in this process. The new application has five specific aims that are designed to test four hypotheses.
The specific aims are: (1) to investigate the interrelationship between mitochondrial and cytosolic 1-C metabolism; (2) to study the regulation of 1-C entry and loss from the folate pool via the two compartmental forms of serine hydroxymethyltransferase; (3) to study the heterozygous disruption of the mouse methionine synthase gene and other genes for folate-dependent enzymes on the flux of 1-C units through the various metabolic cycles; (4) to investigate the use of the mouse methionine synthase heterozygous knockout as a model for the pathological and metabolic effects of vitamin B12 deficiency; and (5) to examine the regulation of expression of methionine synthase, methylenetetrahydrofolate reductase and serine hydroxymethyltransferase and to clone and characterize additional other genes of folate-dependent 1-C metabolism.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK042033-11S1
Application #
6346907
Study Section
Nutrition Study Section (NTN)
Program Officer
May, Michael K
Project Start
1990-01-01
Project End
2004-12-31
Budget Start
2000-09-15
Budget End
2000-12-31
Support Year
11
Fiscal Year
2000
Total Cost
$45,120
Indirect Cost
Name
University of California Berkeley
Department
Nutrition
Type
Schools of Earth Sciences/Natur
DUNS #
094878337
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine et al. (2012) Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders. Dev Neurobiol 72:891-905
MacFarlane, Amanda J; Perry, Cheryll A; Girnary, Hussein H et al. (2009) Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism. J Biol Chem 284:1533-9
Lawrance, Andrea K; Deng, Liyuan; Brody, Lawrence C et al. (2007) Genetic and nutritional deficiencies in folate metabolism influence tumorigenicity in Apcmin/+ mice. J Nutr Biochem 18:305-12
O'Leary, Valerie B; Mills, James L; Pangilinan, Faith et al. (2005) Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab 85:220-7
Davis, Steven R; Quinlivan, Eoin P; Shelnutt, Karla P et al. (2005) Homocysteine synthesis is elevated but total remethylation is unchanged by the methylenetetrahydrofolate reductase 677C->T polymorphism and by dietary folate restriction in young women. J Nutr 135:1045-50
Lim, Unhee; Peng, Kun; Shane, Barry et al. (2005) Polymorphisms in cytoplasmic serine hydroxymethyltransferase and methylenetetrahydrofolate reductase affect the risk of cardiovascular disease in men. J Nutr 135:1989-94
Quinlivan, Eoin P; Davis, Steven R; Shelnutt, Karla P et al. (2005) Methylenetetrahydrofolate reductase 677C->T polymorphism and folate status affect one-carbon incorporation into human DNA deoxynucleosides. J Nutr 135:389-96
Dayal, Sanjana; Devlin, Angela M; McCaw, Ryan B et al. (2005) Cerebral vascular dysfunction in methionine synthase-deficient mice. Circulation 112:737-44
Davis, Steven R; Stacpoole, Peter W; Williamson, Jerry et al. (2004) Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor. Am J Physiol Endocrinol Metab 286:E272-9
Prasannan, Priya; Pike, Schuyler; Peng, Kun et al. (2003) Human mitochondrial C1-tetrahydrofolate synthase: gene structure, tissue distribution of the mRNA, and immunolocalization in Chinese hamster ovary calls. J Biol Chem 278:43178-87

Showing the most recent 10 out of 19 publications