Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK042091-07
Application #
2142086
Study Section
Special Emphasis Panel (ZRG2-PHY (01))
Project Start
1990-01-01
Project End
1999-06-30
Budget Start
1996-07-01
Budget End
1997-06-30
Support Year
7
Fiscal Year
1996
Total Cost
Indirect Cost
Name
Duke University
Department
Biostatistics & Other Math Sci
Type
Schools of Arts and Sciences
DUNS #
071723621
City
Durham
State
NC
Country
United States
Zip Code
27705
Dantzler, William H; Layton, Anita T; Layton, Harold E et al. (2014) Urine-concentrating mechanism in the inner medulla: function of the thin limbs of the loops of Henle. Clin J Am Soc Nephrol 9:1781-9
Nieves-Gonzalez, Aniel; Clausen, Chris; Layton, Anita T et al. (2013) Transport efficiency and workload distribution in a mathematical model of the thick ascending limb. Am J Physiol Renal Physiol 304:F653-64
Nieves-Gonzalez, Aniel; Clausen, Chris; Marcano, Mariano et al. (2013) Fluid dilution and efficiency of Na(+) transport in a mathematical model of a thick ascending limb cell. Am J Physiol Renal Physiol 304:F634-52
Layton, Anita T; Moore, Leon C; Layton, Harold E (2012) Signal transduction in a compliant thick ascending limb. Am J Physiol Renal Physiol 302:F1188-202
Chen, Jing; Sgouralis, Ioannis; Moore, Leon C et al. (2011) A mathematical model of the myogenic response to systolic pressure in the afferent arteriole. Am J Physiol Renal Physiol 300:F669-81
Layton, Anita T; Bowen, Matthew; Wen, Amy et al. (2011) Feedback-mediated dynamics in a model of coupled nephrons with compliant thick ascending limbs. Math Biosci 230:115-27
Layton, Anita T; Layton, Harold E (2011) Countercurrent multiplication may not explain the axial osmolality gradient in the outer medulla of the rat kidney. Am J Physiol Renal Physiol 301:F1047-56
Dantzler, W H; Pannabecker, T L; Layton, A T et al. (2011) Urine concentrating mechanism in the inner medulla of the mammalian kidney: role of three-dimensional architecture. Acta Physiol (Oxf) 202:361-78
Layton, Anita T; Pannabecker, Thomas L; Dantzler, William H et al. (2010) Hyperfiltration and inner stripe hypertrophy may explain findings by Gamble and coworkers. Am J Physiol Renal Physiol 298:F962-72
Marcano, Mariano; Layton, Anita T; Layton, Harold E (2010) Maximum urine concentrating capability in a mathematical model of the inner medulla of the rat kidney. Bull Math Biol 72:314-39

Showing the most recent 10 out of 15 publications