For the treatment of acute and chronic liver failure, there is a critical need for temporary and permanent modes of liver support. The long-term objective of the proposed research is to enhance our basic understanding of hepatocyte behavior in bioartificial liver (BAL) devices in order to provide a rational basis for the development of an effective extracorporeal device which contains functional hepatocytes. In our prior studies, we have developed a number of stable hepatocyte culture systems and have used these systems to investigate various critical technologies for the development of a BAL device. We have also begun an evaluation of the effects of plasma exposure on hepatocyte function in order to understand the behavior of cultured hepatocytes under ex vivo conditions. In our reactor design efforts, we have focused on combining microtechnology techniques with the use of co-cultures of hepatocytes and mesenchymal cells, which, in preliminary experiments, showed an upregulation of hepatospecific function when compared to cultures of hepatocytes alone. For our proposed studies, we hypothesize that the placement of specific patterns of hepatocytes and mesenchymal cells can have a substantial effect on hepatic cell function and therefore reactor performance. First, we will study mechanisms by which mesenchymal-parenchymal interactions contribute to hepatospecific function. Through a thorough mechanistic study we aim to understand the means by which co-culture mediates its effect on hepatocytes, and use this fundamental knowledge to optimize a co-culture system with high-levels of stable differential functional output. Second, we will elucidate mechanisms by which plasma exposure limits hepatospecific function, and develop techniques which help maintain a stable hepatocyte phenotype during extracorporeal plasma perfusion. Third, we will investigate the use of novel a BAL device based on microfabricated hepatocyte co-cultures in the treatment of a number of hepatic insufficiency animal models. Through a combined program of understanding the determining factors in successful hepatocyte co-culture and developing a new approach in BAL device design using micropatterning techniques, we hope to both enhance our basic science base in the area of hepatic tissue engineering and provide a solid foundation for the design of extracorporeal BAL systems for treatment of liver failure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK043371-08
Application #
6329359
Study Section
Surgery and Bioengineering Study Section (SB)
Program Officer
Serrano, Jose
Project Start
1992-09-30
Project End
2002-06-30
Budget Start
2000-12-01
Budget End
2002-06-30
Support Year
8
Fiscal Year
2001
Total Cost
$217,928
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Milwid, Jack M; Elman, Jessica S; Li, Matthew et al. (2014) Enriched protein screening of human bone marrow mesenchymal stromal cell secretions reveals MFAP5 and PENK as novel IL-10 modulators. Mol Ther 22:999-1007
Nativ, Nir I; Chen, Alvin I; Yarmush, Gabriel et al. (2014) Automated image analysis method for detecting and quantifying macrovesicular steatosis in hematoxylin and eosin-stained histology images of human livers. Liver Transpl 20:228-36
Li, Matthew; Tilles, Arno W; Milwid, Jack M et al. (2012) Phenotypic and functional characterization of human bone marrow stromal cells in hollow-fibre bioreactors. J Tissue Eng Regen Med 6:369-77
Jiao, Joy; Milwid, Jack M; Yarmush, Martin L et al. (2011) A mesenchymal stem cell potency assay. Methods Mol Biol 677:221-31
Cho, Cheul H; Park, Jaesung; Tilles, Arno W et al. (2010) Layered patterning of hepatocytes in co-culture systems using microfabricated stencils. Biotechniques 48:47-52
Roach, Kenneth L; King, Kevin R; Uygun, Korkut et al. (2009) High-throughput single cell arrays as a novel tool in biopreservation. Cryobiology 58:315-21
Yagi, Hiroshi; Parekkadan, Biju; Suganuma, Kazuhiro et al. (2009) Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure. Tissue Eng Part A 15:3377-88
Berthiaume, François; Barbe, Laurent; Mokuno, Yasuji et al. (2009) Steatosis reversibly increases hepatocyte sensitivity to hypoxia-reoxygenation injury. J Surg Res 152:54-60
Sharma, Nripen S; Wallenstein, Eric J; Novik, Eric et al. (2009) Enrichment of hepatocyte-like cells with upregulated metabolic and differentiated function derived from embryonic stem cells using S-NitrosoAcetylPenicillamine. Tissue Eng Part C Methods 15:297-306
Nagrath, Deepak; Xu, Hongzhi; Tanimura, Yoko et al. (2009) Metabolic preconditioning of donor organs: defatting fatty livers by normothermic perfusion ex vivo. Metab Eng 11:274-83

Showing the most recent 10 out of 61 publications