The overall objective of this revised proposal is to elucidate the molecular mechanisms coupling electrical excitability of ?-cells to glucose-induced insulin secretion (GSIS) in normal and diabetic states. We seek to test hypotheses concerning the role of voltage- dependent K+ (Kv) channels in regulating electrical activity and changes in intracellular free Ca2+ concentration ([Ca2+]i) that triggers GSIS. Once metabolism leads to closure of KATP channels generating action potentials (APs), Kv channels serve a distinct role in repolarizing the ?-cell membrane, resulting in Ca2+ transients necessary for insulin secretion. Incretin agonists used to treat diabetes reduce Kv currents by a PKA- dependent mechanism, but the identity of the Kv channels involved remains undefined. The Kv channel Kv2.1 is the predominant Kv channel in ?-cells, thought to be a critical channel for ?-cell membrane repolarization. We found that Kv2.1-/- mice, a new knockout model, exhibit abnormal glucose homeostasis with a significant resting hypoglycemia and increased insulin secretion in response to physiological steps in glucose concentration. The islets have wide and aberrant action potentials (APs). Surprisingly the Kv2.1-/- islets remain sensitive to tetraethylammonium, a blocker of Kv channels and Ca2+-activated K+ channels (KCa). These results reveal that other K+ channels participate in membrane repolarization and generation of APs, and could be targets for regulation. We propose to study the properties of these Kv currents not previously studied in normal mouse models in wild type and Kv2.1-/- mice with the following two specific aims:
Aim 1. To define mechanisms underlying regulation of insulin secretion and calcium signaling by Kv channels.
Aim 2. To define the molecular identity of repolarizing K+ channels expressed in ?-cells and understand the role they play in ?-cell excitation-secretion coupling. The results of these studies will enhance our understanding of the importance of Kv channels in insulin secretion and their role in the pathogenesis and potential treatment of diabetes.

Public Health Relevance

Diabetes Mellitus is an important health problem, caused by abnormal insulin secretion relative to the degree of insulin resistance leading to numerous complications. This project addresses important biophysical aspects of the regulation of insulin secretion focusing on how potassium ion movement in and out of the cell controls insulin secretion.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK048494-12S1
Application #
8006768
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Appel, Michael C
Project Start
2010-02-04
Project End
2010-04-30
Budget Start
2010-02-04
Budget End
2010-04-30
Support Year
12
Fiscal Year
2010
Total Cost
$100,000
Indirect Cost
Name
University of Chicago
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
005421136
City
Chicago
State
IL
Country
United States
Zip Code
60637
Liew, Chong Wee; Assmann, Anke; Templin, Andrew T et al. (2014) Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic ? cells. Proc Natl Acad Sci U S A 111:E2319-28
Fridlyand, Leonid E; Jacobson, David A; Philipson, L H (2013) Ion channels and regulation of insulin secretion in human ýý-cells: a computational systems analysis. Islets 5:1-15
Eames, Stefani C; Kinkel, Mary D; Rajan, Sindhu et al. (2013) Transgenic zebrafish model of the C43G human insulin gene mutation. J Diabetes Investig 4:157-67
Kaihara, Kelly A; Dickson, Lorna M; Jacobson, David A et al. (2013) ?-Cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes 62:1527-36
Fridlyand, Leonid E; Philipson, Louis H (2012) A computational systems analysis of factors regulating ýý cell glucagon secretion. Islets 4:262-83
Rajan, Sindhu; Torres, Jacqueline; Thompson, Michael S et al. (2012) SUMO downregulates GLP-1-stimulated cAMP generation and insulin secretion. Am J Physiol Endocrinol Metab 302:E714-23
Fridlyand, Leonid E; Philipson, Louis H (2011) Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: a computational analysis. Prog Biophys Mol Biol 107:293-303
Fridlyand, Leonid E; Phillipson, Louis H (2011) Mechanisms of glucose sensing in the pancreatic *-cell: A computational systems-based analysis. Islets 3:224-30
Eames, Stefani C; Philipson, Louis H; Prince, Victoria E et al. (2010) Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish 7:205-13
Kinkel, Mary D; Eames, Stefani C; Philipson, Louis H et al. (2010) Intraperitoneal injection into adult zebrafish. J Vis Exp :

Showing the most recent 10 out of 46 publications