The mammalian intestinal mucosa is in a constant state of renewal that is characterized by active proliferation of stem cells localized in the crypts, progression of these cells up the crypt villus axis with cessation of proliferation, and subsequent differentiation. A delicate and precise balance of proliferation ->differentiation ->apoptosis must exist in the gut mucosa to maintain this normal intestinal homeostasis. Surgical resection of the small intestine results in an adaptive hyperplasia, whereas the inability to provide enteral nutrients, as occurs in certain post-operative or trauma patients, results in atrophy. The major focus of our group has been the analysis of mechanisms regulating intestinal proliferation, differentiation, adaptation, and apoptosis. With the support of this grant, we have made great strides in our better understanding of the molecular mechanisms regulating intestinal homeostasis. We have shown that stimulation of PI3K/Akt increases normal intestinal proliferation. Our most recent findings have identified novel and differential roles for the mammalian target of rapamycin (mTOR) protein complex, a major downstream effector of PI3K, in intestinal proliferation and differentiation and intestinal cell survival. In preliminary findings, we have shown that inhibition of mTORC2, but not mTORC1, enhances intestinal cell differentiation, suggesting differential effects for these proteins in the gut. Also, we have recently described the molecular mechanisms contributing to glutamine-mediated intestinal cell survival and proliferation;the PI3K/mTOR pathway plays an important protective role to limit apoptosis associated with cellular stress. Finally, we have demonstrated a novel role for the mTOR pathway in intestinal cell autophagy following glutamine deprivation. Based on our recent published and preliminary findings, we have refined our central hypothesis to state that intestinal cell proliferation and differentiation are regulated by signaling mechanisms involving the PI3K/mTOR pathway acting on critical downstream effector proteins;novel and differential effects of mTOR and Akt components exist that further add to the complex, but highly regimented, regulation of intestinal homeostasis. To examine this hypothesis, we have planned experiments with the following Specific Aims: 1) to determine the differential effects of mTOR complexes on intestinal cell homeostasis, 2) to delineate the signaling proteins that mediate the effects of mTOR in the intestine, and 3) to define the role of mTOR/mTOR complexes in intestinal cell growth in vivo. The studies in the current proposal represent direct extensions of our previous findings, and are designed to define in a systematic fashion the molecular mechanisms and signaling events regulating the processes of intestinal proliferation, differentiation, and adaptation. To achieve our goals, we have assembled a multidisciplinary, diverse, and highly collaborative team of investigators who each bring unique expertise and background to the project.

Public Health Relevance

The intestinal mucosa is in a constant state of growth and renewal;the molecular pathways contributing to this critical function are poorly understood. Our recent findings have identified novel roles for components of the PI3K/Akt/mTOR signaling pathway in intestinal homeostasis. Delineating the cellular factors and signaling pathways regulating these processes is crucial to our understanding of not only normal gut development and maturation, but also the effects of surgical resection and stress on intestinal adaptation and survival.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK048498-16
Application #
7889065
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Serrano, Jose
Project Start
1996-03-15
Project End
2014-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
16
Fiscal Year
2010
Total Cost
$371,250
Indirect Cost
Name
University of Kentucky
Department
Surgery
Type
Schools of Medicine
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40506
Wang, Qingding; Zhou, Yuning; Rychahou, Piotr et al. (2018) Deptor Is a Novel Target of Wnt/?-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth. Cancer Res 78:3163-3175
Rychahou, Piotr; Bae, Younsoo; Reichel, Derek et al. (2018) Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J Control Release 275:85-91
Li, Jing; Song, Jun; Li, Xian et al. (2018) FFAR4 Is Involved in Regulation of Neurotensin Release From Neuroendocrine Cells and Male C57BL/6 Mice. Endocrinology 159:2939-2952
Wang, Qingding; Zhou, Yuning; Rychahou, Piotr et al. (2017) Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ 24:458-468
Kenlan, Dasha E; Rychahou, Piotr; Sviripa, Vitaliy M et al. (2017) Fluorinated N,N'-Diarylureas As Novel Therapeutic Agents Against Cancer Stem Cells. Mol Cancer Ther 16:831-837
Yu, T; Chen, X; Lin, T et al. (2016) KLF4 deletion alters gastric cell lineage and induces MUC2 expression. Cell Death Dis 7:e2255
Li, Jing; Song, Jun; Weiss, Heidi L et al. (2016) Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells. Mol Endocrinol 30:26-36
Li, Jing; Song, Jun; Zaytseva, Yekaterina Y et al. (2016) An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 533:411-5
Zhou, Y; Rychahou, P; Wang, Q et al. (2015) TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis 6:e1631
Elliott, Victoria A; Rychahou, Piotr; Zaytseva, Yekaterina Y et al. (2014) Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS One 9:e97432

Showing the most recent 10 out of 132 publications