The mammalian intestinal mucosa undergoes a process of continual renewal characterized by active proliferation of stem cells localized near the base of the crypts; progression of these cells up the crypt-villus axis with cessation of proliferation; and subsequent differentiation into one of the four primary cell types (i.e., enterocytes, goblet cells, Paneth cells and enteroendocrine cells). An imbalance in this highly-regimented and orderly process within the crypts is associated with a number of common intestinal pathologies (e.g., colorectal cancer and inflammatory bowel disease [IBD]). Delineating the molecular factors regulating intestinal proliferation and differentiation is crucial to our understanding of not only normal gut development and adaptation, but also aberrant gut growth. With the support of this grant, we have shown the importance of the PI3K/Akt/mTOR and Wnt/?-catenin pathways in the regulation of intestinal cell proliferation and differentiation. In addition, we showed that enhanced ketogenesis by mTORC1 inhibition contributes to the regulation of intestinal cell differentiation and that tuberous sclerosis complex 2/mTORC1 signaling contributes to the maintenance of intestinal epithelial homeostasis. Moreover, we found that activation of Wnt/?-catenin signaling suppresses the expression of the ketogenic enzyme hydroxymethylglutaryl CoA synthase 2 (HMGCS2), which inhibits glycolysis in intestinal cells. Recently, we have shown that deficiency of SIRT2, a member of the sirtuin family of proteins, results in the activation of Akt/mTORC1 and Wnt/?-catenin, increased intestinal cell proliferation and stemness, and increased expression of glycolytic hexokinases (HK) 1 and 2. Using single cell sequencing, we found that HK1 and HK2 were differentially expressed in various types of intestinal cells; knockdown of HK2, but not HK1, increased Paneth and goblet cell differentiation. Based on our recently published and preliminary findings, we have further refined our central hypothesis to state that the glycolytic enzyme HK2, acting downstream of SIRT2, significantly contributes to the maintenance of normal intestinal homeostasis. To examine our central hypothesis, we have planned experiments with the following Specific Aims: 1) to further delineate the cellular mechanisms for SIRT2-mediated alterations of glycolysis and oxidative phosphorylation in intestinal cells; 2) to better define the role of HK2 in mediating the effects of SIRT2 in the intestine; and, 3) to determine the impact of alterations of SIRT2/HK2 on intestinal homeostasis in vivo. The studies in the current proposal represent direct and novel extensions of our previous findings, and are designed to define, in a systematic fashion, the molecular mechanisms and signaling events regulating the processes of intestinal proliferation, differentiation, and adaptation utilizing a number of innovative techniques including murine and human intestinal organoids, novel transgenic models, single-cell sequencing, and stable isotope resolved metabolomics (SIRM).

Public Health Relevance

The intestinal mucosa is in a constant state of growth and renewal; the molecular pathways contributing to this tightly-controlled and highly-regimented process remain to be completely elucidated. Our recent findings have identified the glycolytic enzyme, hexokinase 2 (HK2), acting downstream of SIRT2, as a critical factor in the maintenance of normal gut growth and differentiation. Delineating the cellular factors regulating these normal processes is crucial to our understanding of normal gut development and maturation and also various intestinal pathologies (e.g., inflammation) that can arise from deregulation of these pathways.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK048498-25
Application #
10067241
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Serrano, Jose
Project Start
1996-03-15
Project End
2024-06-30
Budget Start
2020-08-01
Budget End
2021-06-30
Support Year
25
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Kentucky
Department
Surgery
Type
Schools of Medicine
DUNS #
939017877
City
Lexington
State
KY
Country
United States
Zip Code
40526
Wang, Qingding; Zhou, Yuning; Rychahou, Piotr et al. (2018) Deptor Is a Novel Target of Wnt/?-Catenin/c-Myc and Contributes to Colorectal Cancer Cell Growth. Cancer Res 78:3163-3175
Rychahou, Piotr; Bae, Younsoo; Reichel, Derek et al. (2018) Colorectal cancer lung metastasis treatment with polymer-drug nanoparticles. J Control Release 275:85-91
Li, Jing; Song, Jun; Li, Xian et al. (2018) FFAR4 Is Involved in Regulation of Neurotensin Release From Neuroendocrine Cells and Male C57BL/6 Mice. Endocrinology 159:2939-2952
Wang, Qingding; Zhou, Yuning; Rychahou, Piotr et al. (2017) Ketogenesis contributes to intestinal cell differentiation. Cell Death Differ 24:458-468
Kenlan, Dasha E; Rychahou, Piotr; Sviripa, Vitaliy M et al. (2017) Fluorinated N,N'-Diarylureas As Novel Therapeutic Agents Against Cancer Stem Cells. Mol Cancer Ther 16:831-837
Yu, T; Chen, X; Lin, T et al. (2016) KLF4 deletion alters gastric cell lineage and induces MUC2 expression. Cell Death Dis 7:e2255
Li, Jing; Song, Jun; Weiss, Heidi L et al. (2016) Activation of AMPK Stimulates Neurotensin Secretion in Neuroendocrine Cells. Mol Endocrinol 30:26-36
Li, Jing; Song, Jun; Zaytseva, Yekaterina Y et al. (2016) An obligatory role for neurotensin in high-fat-diet-induced obesity. Nature 533:411-5
Zhou, Y; Rychahou, P; Wang, Q et al. (2015) TSC2/mTORC1 signaling controls Paneth and goblet cell differentiation in the intestinal epithelium. Cell Death Dis 6:e1631
Zaytseva, Yekaterina Y; Elliott, Victoria A; Rychahou, Piotr et al. (2014) Cancer cell-associated fatty acid synthase activates endothelial cells and promotes angiogenesis in colorectal cancer. Carcinogenesis 35:1341-51

Showing the most recent 10 out of 132 publications