The essential branched-chain amino acids (BCAA) play critical roles in maintaining normal protein homeostasis and they influence critical intracellular signaling pathways that regulate metabolic functions. In normal individuals, nutritional adaptations to a reduced dietary protein intake (e.g., fasting, a low protein diet prescription) decrease the irreversible degradation of BCAA. Catabolic conditions like chronic renal failure (CRF) or acute diabetes impair these adaptive responses that preserve protein mass, thus contributing to the loss of lean body mass. The goals of Dr. Price and colleagues are to understand the mechanisms that regulate the activity of branched-chain alpha-ketoacid dehydrogenase (BCKAD), the rate-limiting enzyme in BCAA degradation, in the major tissues where BCAA are catabolized, and to determine if there are common signals in different catabolic states that regulate BCKAD activity, and hence, BCAA levels. To address these goals, the investigators will evaluate three hypotheses: 1) Acidification and glucocorticoids influence transcription of BCKAD subunit genes through specific cis-acting response elements. The investigators will identify specific DNA promoter elements in the BCKAD E2 gene that confer responses to acidification and glucocorticoids. 2) Abnormalities in BCAA utilization in rats with CRF result from tissue-specific alterations in BCKAD activity at both genetic and biochemical levels. The investigators will define how CRF influences the activities of BCKAD and BCKAD kinase, a unique kinase that inhibits BCKAD activity, in muscle, liver and kidney in a well-established rat model. They will measure BCKAD activity, BCKAD subunit and kinase proteins and amounts of subunit and kinase mRNAs 3) Insulin modulates BCKAD and/or BCKAD activities in different tissues by a mechanism requiring the critical signaling enzyme phosphatidylinositol 3-kinase. The investigators will determine the biochemical mechanism(s) that increase BCKAD activity in rat muscle, liver and kidney in response to acute diabetes mellitus (i.e., insulin insufficiency) and then examine the signaling mechanisms by which insulin regulates BCKAD and BCKAD kinase in cultured L6 muscle cells. The investigators findings will define cellular mechanisms regulating BCAA degradation in uremia, acute diabetes and other catabolic conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK050740-08
Application #
6635061
Study Section
Nutrition Study Section (NTN)
Program Officer
Eggers, Paul Wayne
Project Start
1996-08-01
Project End
2005-05-31
Budget Start
2003-06-01
Budget End
2005-05-31
Support Year
8
Fiscal Year
2003
Total Cost
$307,800
Indirect Cost
Name
Emory University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ et al. (2013) Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin A? null mice. PLoS One 8:e62503
Reddy, Ramesh N; Knotts, Taylor L; Roberts, Brian R et al. (2011) Calcineurin A-? is required for hypertrophy but not matrix expansion in the diabetic kidney. J Cell Mol Med 15:414-22
Russ Price, S; Klein, Janet D (2011) Cyclooxygenase-2 in the kidney: good, BAD, or both? Kidney Int 80:905-907
Zheng, Bin; Ohkawa, Sakae; Li, Haiyan et al. (2010) FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J 24:2660-9
Roberts-Wilson, Tiffany K; Reddy, Ramesh N; Bailey, James L et al. (2010) Calcineurin signaling and PGC-1alpha expression are suppressed during muscle atrophy due to diabetes. Biochim Biophys Acta 1803:960-7
Hu, Junping; Du, Jie; Zhang, Liping et al. (2010) XIAP reduces muscle proteolysis induced by CKD. J Am Soc Nephrol 21:1174-83
Price, S Russ; Gooch, Jennifer L; Donaldson, Sue K et al. (2010) Muscle atrophy in chronic kidney disease results from abnormalities in insulin signaling. J Ren Nutr 20:S24-8
Gao, Yongmei; Ordas, Ronald; Klein, Janet D et al. (2008) Regulation of caspase-3 activity by insulin in skeletal muscle cells involves both PI3-kinase and MEK-1/2. J Appl Physiol 105:1772-8
Wang, Xiaonan; Hu, Junping; Price, S Russ (2007) Inhibition of PI3-kinase signaling by glucocorticoids results in increased branched-chain amino acid degradation in renal epithelial cells. Am J Physiol Cell Physiol 292:C1874-9
Bailey, James L; Zheng, Bin; Hu, Zhaoyong et al. (2006) Chronic kidney disease causes defects in signaling through the insulin receptor substrate/phosphatidylinositol 3-kinase/Akt pathway: implications for muscle atrophy. J Am Soc Nephrol 17:1388-94

Showing the most recent 10 out of 41 publications