We now appreciate that Cystic Fibrosis (CF) is caused by multiple variants defined by CFTR2 comprising >300 clinically validated variants contributing to disease. Deletion of Phe 508 from the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) protein is the prominent mutation found in ~90% patients, a residue critical for both intra- domain and inter-domain contacts controlling the intrinsic thermodynamic stability of the CFTR fold and channel function. Folding of CFTR and its function is determined not only by its primary sequence, but by an extensive proteostasis network that chaperones the dynamic protein fold throughout it?s lifespan. In addition to an improved understanding of the roles of proteostasis and interaction networks during the previous funding period by the Balch laboratory, the Riordan group has made major advances in addressing the structural elements of CFTR responsible for its marginal thermodynamic stability that make the fold susceptible to complete destabilization by single amino acid changes. The unifying hypothesis from Balch and Riordan underpinning this proposal is that variants impacting the ?functional? structure of CFTR in the cell are manifested as networking problems within the dynamic protein conformational organization of CFTR (cis interactions) and between this dynamic structural network and components of proteostasis network in trans. Our objective is to understand the relationship(s) between these cis and trans networks in depth by focusing on the properties of the fold found in vivo (Balch) and relating these biological properties of the physiololgic fold to biochemical, biophysical and structural features defined in vitro (Riordan). Unique to our hypothesis is the postulate that proteostasis biology can be modified to ?repair? the function of CFTR folding mutants by impacting their stability and functional dynamics. These issues will be addressed in two Aims.
Aim 1 (Balch and Riordan) will jointly focus on understanding key proteostasis components contributing to loss and correction of F508 function in the NBD1 domain in vivo (Balch) in relation to its conformational stability in vitro (Riordan). Balch will investigate the role of factors influencing mRNA stability, translation and early folding events that we hypothesize are critical to management of the structural defects directing export from the endoplasmic reticulum (ER) for downstream function. The Riordan laboratory exploit major advances made in the expression and purification of high quality wild-type (WT) and variant CFTR protein suitable to understand these NBD1 defined events at the biochemical, biophysical and structural levels in vitro in the context of the full- length protein.
Aim 2 will expand Aim1 to focus on additional rare CFTR2 variants that tune the fold of NBD1 to understand the differential impact of proteostasis in the global management of NBD1 with the hypothesis that each variant provides a unique view into intermediate folding states responsible for function. Integration of the long-term Balch and Riordan efforts will now provide an unprecedented understanding of the CFTR folding landscape.

Public Health Relevance

Misfolding diseases such as Cystic Fibrosis (CF) are a consequence of the failure of protein folding in response to loss of interaction with the folding support network referred to as proteostasis. We will characterize in vivo (Balch) and in vitro (Riordan) the biological, biochemical, biophysical and structural features required for folding, stability and function of WT, F508del and select CFTR2 variants impacting the ability of NBD1 to function as key features of the fold required for restoration of CFTR function in human disease. Our studies, based on the unique expertise of two pioneering laboratories in the field of CF, will provide an unprecedented bridge between CFTR structure, folding and function in designing new approaches to rescue some of the most severe forms of CFTR impacting >90% of the patient population harboring disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Eggerman, Thomas L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Scripps Research Institute
La Jolla
United States
Zip Code
Hutt, Darren M; Mishra, Sanjay Kumar; Roth, Daniela Martino et al. (2018) Silencing of the Hsp70-specific nucleotide-exchange factor BAG3 corrects the F508del-CFTR variant by restoring autophagy. J Biol Chem 293:13682-13695
Hutt, Darren M; Loguercio, Salvatore; Campos, Alexandre Rosa et al. (2018) A Proteomic Variant Approach (ProVarA) for Personalized Medicine of Inherited and Somatic Disease. J Mol Biol 430:2951-2973
Yang, Zhengrong; Hildebrandt, Ellen; Jiang, Fan et al. (2018) Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1. Biochim Biophys Acta Biomembr 1860:1193-1204
Hutt, Darren M; Loguercio, Salvatore; Roth, Daniela Martino et al. (2018) Correcting the F508del-CFTR variant by modulating eukaryotic translation initiation factor 3-mediated translation initiation. J Biol Chem 293:13477-13495
Wang, Chao; Balch, William E (2018) Bridging Genomics to Phenomics at Atomic Resolution through Variation Spatial Profiling. Cell Rep 24:2013-2028.e6
Subramanian, Kanagaraj; Rauniyar, Navin; Lavalleé-Adam, Mathieu et al. (2017) Quantitative Analysis of the Proteome Response to the Histone Deacetylase Inhibitor (HDACi) Vorinostat in Niemann-Pick Type C1 disease. Mol Cell Proteomics 16:1938-1957
Ma, Pikyee; Weichert, Dietmar; Aleksandrov, Luba A et al. (2017) The cubicon method for concentrating membrane proteins in the cubic mesophase. Nat Protoc 12:1745-1762
Wang, Chao; Bouchecareilh, Marion; Balch, William E (2017) Measuring the Effect of Histone Deacetylase Inhibitors (HDACi) on the Secretion and Activity of Alpha-1 Antitrypsin. Methods Mol Biol 1639:185-193
Das, Jhuma; Aleksandrov, Andrei A; Cui, Liying et al. (2017) Transmembrane helical interactions in the CFTR channel pore. PLoS Comput Biol 13:e1005594
Budinger, G R Scott; Kohanski, Ronald A; Gan, Weiniu et al. (2017) The Intersection of Aging Biology and the Pathobiology of Lung Diseases: A Joint NHLBI/NIA Workshop. J Gerontol A Biol Sci Med Sci 72:1492-1500

Showing the most recent 10 out of 47 publications