Our long-term goal is to define molecular mechanisms important for the regulation of cell proliferation and apoptosis in the exocrine pancreas which is a crucial step for better understanding normal morphogenesis and pancreatic cancer. Toward this end, we are studying the role of growth-factor inducible C2H2 zinc finger transcription factors in the regulation of these phenomena. Zinc finger proteins play a crucial role in organogenesis in several mammalian tissues, and mutations in some of these genes give rise to neoplastic transformation. However, their presence and function in the exocrine pancreas remain to be elucidated. The mechanistic experiments outlined in this proposal will test the central hypothesis that a novel TGFbeta-inducible zinc finger protein TIEG is a transcription factor involved in the regulation of apoptosis and/or the cell cycle in pancreatic cells. We have isolated a TIEG cDNA from a rat pancreas library and demonstrated that this gene is an early response target for TGFbeta in exocrine pancreatic cell populations. Interestingly, although its biochemical properties have not yet been determined, sequence analysis of the deduced TIEG protein reveals the presence of several motifs that are characteristic of transcription factors. Because TGFbeta induces both apoptosis and cell cycle arrest in pancreatic cell populations, TIEG is a good candidate to participate in these phenomena. Indeed, we have recently shown that the overexpression of TIEG in pancreatic cell populations induces apoptosis. Thus, in this proposal, we hypothesize that: 1) TIEG functions as a sequence-specific transcription factor, 2) the apoptotic effects of TIEG depend on the activity of this protein as a transcription factor, and 3) the overexpression of TIEG induces cell cycle arrest prior to apoptosis. These hypotheses will be addressed in the following specific aims: 1) Determine the nuclear localization and transcriptional regulatory activity of TIEG, 2) Determine the DNA binding sequence(s) for TIEG, and 3) Characterize the mechanisms involved in TIEG-induced apoptosis (transcriptional activity and cell cycle arrest). We propose to use state-of-the-art molecular techniques in combination with well- established functional assays to approach these aims. We are optimistic that the successful completion of this proposal will significantly advance our understanding on the role of zinc finger proteins in pancreatic cell physiology and begin to fill a gap in the existing knowledge in this underrepresented area of pancreatic research. Furthermore, this information will be crucial as a theoretical framework for future studies on the role of zinc finger transcription factors in pancreatic development and cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK052913-01A1
Application #
2692610
Study Section
General Medicine A Subcommittee 2 (GMA)
Program Officer
Serrano, Jose
Project Start
1998-09-25
Project End
2002-08-31
Budget Start
1998-09-25
Budget End
1999-08-31
Support Year
1
Fiscal Year
1998
Total Cost
Indirect Cost
Name
Mayo Clinic, Rochester
Department
Type
DUNS #
City
Rochester
State
MN
Country
United States
Zip Code
55905
Colón-Caraballo, Mariano; Torres-Reverón, Annelyn; Soto-Vargas, John Lee et al. (2018) Effects of histone methyltransferase inhibition in endometriosis. Biol Reprod 99:293-307
Lomberk, Gwen; Blum, Yuna; Nicolle, Rémy et al. (2018) Distinct epigenetic landscapes underlie the pathobiology of pancreatic cancer subtypes. Nat Commun 9:1978
Seo, Seungmae; Mathison, Angela; Grzenda, Adrienne et al. (2018) Mechanisms Underlying the Regulation of HP1? by the NGF-PKA Signaling Pathway. Sci Rep 8:15077
Xiang, Xiaoyu; Wang, Yuanguo; Zhang, Hongbin et al. (2018) Vasodilator-stimulated phosphoprotein promotes liver metastasis of gastrointestinal cancer by activating a ?1-integrin-FAK-YAP1/TAZ signaling pathway. NPJ Precis Oncol 2:2
Kaiwar, Charu; Zimmermann, Michael T; Ferber, Matthew J et al. (2017) Novel NR2F1 variants likely disrupt DNA binding: molecular modeling in two cases, review of published cases, genotype-phenotype correlation, and phenotypic expansion of the Bosch-Boonstra-Schaaf optic atrophy syndrome. Cold Spring Harb Mol Case Stud 3:
Blackburn, Patrick R; Barnett, Sarah S; Zimmermann, Michael T et al. (2017) Novel de novo variant in EBF3 is likely to impact DNA binding in a patient with a neurodevelopmental disorder and expanded phenotypes: patient report, in silico functional assessment, and review of published cases. Cold Spring Harb Mol Case Stud 3:a001743
Higgins, Erin M; Bos, J Martijn; Mason-Suares, Heather et al. (2017) Elucidation ofMRAS-mediated Noonan syndrome with cardiac hypertrophy. JCI Insight 2:e91225
Sarmento, Olga F; Svingen, Phyllis A; Xiong, Yuning et al. (2017) The Role of the Histone Methyltransferase Enhancer of Zeste Homolog 2 (EZH2) in the Pathobiological Mechanisms Underlying Inflammatory Bowel Disease (IBD). J Biol Chem 292:706-722
Nicolle, Rémy; Blum, Yuna; Marisa, Laetitia et al. (2017) Pancreatic Adenocarcinoma Therapeutic Targets Revealed by Tumor-Stroma Cross-Talk Analyses in Patient-Derived Xenografts. Cell Rep 21:2458-2470
Santofimia-Castaño, Patricia; Rizzuti, Bruno; Pey, Ángel L et al. (2017) Intrinsically disordered chromatin protein NUPR1 binds to the C-terminal region of Polycomb RING1B. Proc Natl Acad Sci U S A :

Showing the most recent 10 out of 129 publications