The aims are to investigate the gastric physiology of the gastric pathogen Helicobacter pylori.
Specific Aims : (A). Identify the acid response regulon and signaling system of the cytoplasmic pH sensor. HP0244 is a previously unsuspected sensor of cytoplasmic pH. Using transcriptome analysis after pH 2.5 incubation, the HP0244, HP0703 independent, regulon will be identified to separate periplasmic (HP0165) from cytoplasmic pH) regulation and confirmed by qPCR;(B) Identify colonization dependent gene expression and evaluate pH control of their expression by comparative transcriptome analysis of H. pylori from infected gerbils with and without acid suppression. Transcriptome analysis of H. pylori infecting the gerbil stomach compared to in vitro cultured H. pylori showed a greater up-regulation of genes encoding proteins involved in acid acclimation than at pH 4.5 in vitro, likely reflecting a pH <4.5 in the niche of the colonizing organisms. Cell division, wall and protein biosynthesis genes were also increased. Preliminary data show that acid inhibition by a PPI reduces expression of the former group to the level found at pH 4.5 in vitro but augments expression of the latter three groups of growth-related genes, this may explain the need for a combination of a PPI with growth-dependent antibiotics for triple therapy. These data may lead to dual therapy with a long acting PPI + amoxicillin;(C) Investigate pH-induced activation and trafficking of a urease complex and other proteins to UreI on the inner membrane and determine whether this is regulated by HP0165 or HP0244 The expression of urease by H. pylori (~10% of total protein) is essential for gastric infections. However, at neutral pH, only 1/3rd of urease is active, 2/3rd is present as inactive apoenzyme. pH-dependent activation of the apoenzyme would provide a more rapid response to acid than de novo synthesis. Preliminary results suggest that there is activation and translocation of urease at acidic pH that is dependent on HP0165. UreI serves as the membrane anchor for the pH- dependent relocation of urease to the inner membrane and this is required for activation of apourease. This research may provide new leads for improvement eradication therapy thereby decreasing the risk of peptic ulcer disease and gastric cancer.

Public Health Relevance

Helicobacter pylori is responsible for peptic ulcers and a fortyfold increased risk of gastric cancer. We shall analyze the physiology of H. pylori in the stomach by investigating signaling systems for genes regulated by gastric pH and the role of urease trafficking and activation in infection. A better understanding of effects of acid inhibition on H. pylori may allow improvement or replacement of triple therapy for eradication.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Gastrointestinal Cell and Molecular Biology Study Section (GCMB)
Program Officer
Hamilton, Frank A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Brentwood Biomedical Research Institute
Los Angeles
United States
Zip Code
Sachs, G; Marcus, E A; Wen, Y et al. (2018) Editorial: control of acid secretion. Aliment Pharmacol Ther 48:682-683
van Leeuwen, Marina T; Gurney, Howard; Turner, Jennifer J et al. (2016) Patterns and trends in the incidence of paediatric and adult germ cell tumours in Australia, 1982-2011. Cancer Epidemiol 43:15-21
Marcus, Elizabeth A; Vagin, Olga; Tokhtaeva, Elmira et al. (2013) Helicobacter pylori impedes acid-induced tightening of gastric epithelial junctions. Am J Physiol Gastrointest Liver Physiol 305:G731-9
Marcus, Elizabeth A; Sachs, George; Scott, David R (2013) The role of ExbD in periplasmic pH homeostasis in Helicobacter pylori. Helicobacter 18:363-72
Marcus, E A; Inatomi, N; Nagami, G T et al. (2012) The effects of varying acidity on Helicobacter pylori growth and the bactericidal efficacy of ampicillin. Aliment Pharmacol Ther 36:972-9
Goebel, M; Stengel, A; Lambrecht, N W G et al. (2011) Selective gene expression by rat gastric corpus epithelium. Physiol Genomics 43:237-54
Shin, Jai Moo; Munson, Keith; Sachs, George (2011) Gastric H+,K+-ATPase. Compr Physiol 1:2141-53
Shin, J M; Vagin, O; Munson, K et al. (2011) Erratum to: Molecular mechanisms in therapy of acid-related diseases. Cell Mol Life Sci 68:921
Sachs, George; Scott, David R; Wen, Yi (2011) Gastric infection by Helicobacter pylori. Curr Gastroenterol Rep 13:540-6
Sachs, George; Marcus, Elizabeth A; Scott, David R (2011) The role of the NMDA receptor in Helicobacter pylori-induced gastric damage. Gastroenterology 141:1967-9

Showing the most recent 10 out of 28 publications