Alternative splicing of pre-mRNA transcripts is a widespread means for producing polypeptide diversity from a single gene. Over 60% of human genes are expressed through alternative splicing, however, mechanisms of splicing regulation are poorly understood. This lab discovered that insulin regulates the alternative splicing of protein kinase C-(II (PKC(II) in its target tissues: muscle, fat, liver and in cells with functional insulin receptor such as aortic smooth muscle cells, embryonic fibroblasts, and HeLa cells. We identified members of the Serine/Arginine-rich (SR) family splicing proteins that bind to splicing enhancers in the pre-mRNA to regulate exon inclusion as the factors phosphorylated in response to insulin. We first studied SRp40, a splicing enhancer and identified Akt as a kinase that regulated its function via phosphorylation of residues in the arginine/serine (RS) domain. We hypothesize that Akt acts as a molecular switch in splicing regulation at several steps by also regulating other SR protein kinases such as Clk, a family of four dual function LAMMER kinases. Kinases such as Clk1 (also called Clk/Sty) and Clk2 phosphorylate SR proteins and alter their interactions in the spliceosome. Unraveling how Akt regulates Clk will add another level of regulation to insulin action. The long-term goal of the research is to determine how insulin regulates nuclear splice site selection via the activation of various kinases and splicing factors. The current aims will investigate (1) the roles of Clk1 and Clk2 phosphorylation in PKC( alternative splicing, (2) determine how SRp55 functions in PKC( splicing, and (3) identify spliceosome complexes involved in the insulin activated spliceosome and depletion of splicing factors from nuclear extracts using in vitro splicing assays to define cis-elements involved in insulin regulated splicing. The discovery that insulin regulates splicing of PKC(II, a kinase involved in insulin responses at multiple levels, indicates that there are also other target genes of this pathway that must also be spliced in a similar manner. The unique system will reveal the nature of kinase regulation, focusing on PKC(II in splicing and diabetes.

Public Health Relevance

Given the magnitude of the problems encountered with diabetes and its complications, understanding insulin action has an immense impact on healthcare since it is the sixth leading cause of disease-related death in the US. The need to define the factors contributing to diabetes onset and identify new potential therapeutic targets is a priority. The processing of pre-mRNA following insulin stimulation of its target tissues is a poorly understood area that is altered in the diabetic state. Understanding the insulin receptor signaling pathways with the goal of defining how insulin action is reflected in the nucleus of insulin responsive tissues will allow us to determine the specificity of signaling through the insulin receptor to regulate metabolic functions causing resistance to insulin action. This proposal is designed to investigate a new kinase in the insulin signaling cascade, Clk/Sty, and its nuclear substrates, SR proteins, which modify RNA processing to alter gene expression. SR proteins are altered in insulin resistance.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK054393-06
Application #
7586668
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Silva, Corinne M
Project Start
2001-08-15
Project End
2012-02-29
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
6
Fiscal Year
2009
Total Cost
$288,548
Indirect Cost
Name
University of South Florida
Department
Biochemistry
Type
Schools of Medicine
DUNS #
069687242
City
Tampa
State
FL
Country
United States
Zip Code
33612
Li, Pengfei; Carter, Gay; Romero, Jacqueline et al. (2013) Clk/STY (cdc2-like kinase 1) and Akt regulate alternative splicing and adipogenesis in 3T3-L1 pre-adipocytes. PLoS One 8:e53268
Kleiman, E; Carter, G; Ghansah, T et al. (2009) Developmentally spliced PKCbetaII provides a possible link between mTORC2 and Akt kinase to regulate 3T3-L1 adipocyte insulin-stimulated glucose transport. Biochem Biophys Res Commun 388:554-9
Jiang, Kun; Patel, Niketa A; Watson, James E et al. (2009) Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid. Endocrinology 150:2087-97
Chappell, D S; Patel, N A; Jiang, K et al. (2009) Functional involvement of protein kinase C-betaII and its substrate, myristoylated alanine-rich C-kinase substrate (MARCKS), in insulin-stimulated glucose transport in L6 rat skeletal muscle cells. Diabetologia 52:901-11
Ghosh, Nilanjan; Patel, Niketa; Jiang, Kun et al. (2007) Ceramide-activated protein phosphatase involvement in insulin resistance via Akt, serine/arginine-rich protein 40, and ribonucleic acid splicing in L6 skeletal muscle cells. Endocrinology 148:1359-66
Horovitz-Fried, Miriam; Jacob, Avraham I; Cooper, Denise R et al. (2007) Activation of the nuclear transcription factor SP-1 by insulin rapidly increases the expression of protein kinase C delta in skeletal muscle. Cell Signal 19:556-62
Sampson, Sanford R; Cooper, Denise R (2006) Specific protein kinase C isoforms as transducers and modulators of insulin signaling. Mol Genet Metab 89:32-47
Horovitz-Fried, Miriam; Cooper, Denise R; Patel, Niketa A et al. (2006) Insulin rapidly upregulates protein kinase Cdelta gene expression in skeletal muscle. Cell Signal 18:183-93
Patel, Niketa A; Song, Shijie S; Cooper, Denise R (2006) PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells. Gene Expr 13:73-84
Patel, Niketa A; Kaneko, Satoshi; Apostolatos, Hercules S et al. (2005) Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CbetaII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem 280:14302-9

Showing the most recent 10 out of 13 publications