The goal of the present application is to determine how the protein implicated in hereditary hemochromatosis functions to regulate iron transport across epithelial cell barriers. Hereditary hemochromatosis is a disease of iron overload leading to iron accumulation in specific organs over the life time of the individual. Excess iron damages organs and results in a variety of problems such as liver failure, adult onset diabetes, heart failure, arthritus and hepatoma. It is the most common inherited disease in people of European descent affecting approximately 1 in 400 individuals. Recently the gene for this disease was identified and the protein it encodes (HFE) found to be similar to major histocompatibility class I proteins. The sequence of the molecule gives little insight into its function. Data obtained for preliminary results and previous data suggest that HFE is a negative regulator of iron uptake and mutations in the gene cause a loss of function. One model would be that HFE regulates iron transport across epithelial cell barriers by sensing the iron saturation of the iron transport protein, transferrin on the basolateral side of the cell. Iron uptake from the basolateral side via the transferrin receptor then would regulate iron transport from the apical to the basolateral side of the cell by altering intracellular iron pools. The model will be tested by measuring transferrin-meditated and transferrin- independent iron uptake in cells expressing HFE and compared to cells not expressing HFE. The long term goal of these studies is to determine how the transport of iron is regulated in the body.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK054488-02
Application #
6363024
Study Section
Metallobiochemistry Study Section (BMT)
Program Officer
Badman, David G
Project Start
2000-03-01
Project End
2004-02-29
Budget Start
2001-03-01
Budget End
2002-02-28
Support Year
2
Fiscal Year
2001
Total Cost
$249,048
Indirect Cost
Name
Oregon Health and Science University
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
009584210
City
Portland
State
OR
Country
United States
Zip Code
97239
Zhao, Ningning; Zhang, An-Sheng; Wortham, Aaron M et al. (2017) The Tumor Suppressor, P53, Decreases the Metal Transporter, ZIP14. Nutrients 9:
Zhao, Ningning; Nizzi, Christopher P; Anderson, Sheila A et al. (2015) Low intracellular iron increases the stability of matriptase-2. J Biol Chem 290:4432-46
Worthen, Christal A; Enns, Caroline A (2014) The role of hepatic transferrin receptor 2 in the regulation of iron homeostasis in the body. Front Pharmacol 5:34
Zhao, Ningning; Zhang, An-Sheng; Worthen, Christal et al. (2014) An iron-regulated and glycosylation-dependent proteasomal degradation pathway for the plasma membrane metal transporter ZIP14. Proc Natl Acad Sci U S A 111:9175-80
Yabu, Julie M; Anderson, Matthew W; Kim, Deborah et al. (2013) Sensitization from transfusion in patients awaiting primary kidney transplant. Nephrol Dial Transplant 28:2908-18
Zhao, Ningning; Zhang, An-Sheng; Enns, Caroline A (2013) Iron regulation by hepcidin. J Clin Invest 123:2337-43
Enns, Caroline A; Ahmed, Riffat; Wang, Jiaohong et al. (2013) Increased iron loading induces Bmp6 expression in the non-parenchymal cells of the liver independent of the BMP-signaling pathway. PLoS One 8:e60534
Zhao, Ningning; Enns, Caroline A (2012) Iron transport machinery of human cells: players and their interactions. Curr Top Membr 69:67-93
Chloupková, Maja; Zhang, An-Sheng; Enns, Caroline A (2010) Stoichiometries of transferrin receptors 1 and 2 in human liver. Blood Cells Mol Dis 44:28-33
Zhao, Ningning; Gao, Junwei; Enns, Caroline A et al. (2010) ZRT/IRT-like protein 14 (ZIP14) promotes the cellular assimilation of iron from transferrin. J Biol Chem 285:32141-50

Showing the most recent 10 out of 27 publications