The stomach must survive HCl secreted by the gastric epithelium. This challenge is heightened by the frequent presence of compounds (e.g. non-steroidal anti-inflammatory drugs) or organisms (Helicobacter pylori) which compromise the gastric barrier to acid, leading to ulcers when the barrier is breached. An alkaline juxtamucosal gel layer is the first line of gastric defense: acting to protect the gastric epithelium from back-diffusion of acid from the lumen. We have developed a unique approach to non-invasively measure pH at the gastric surface in vivo. Using confocal microscopy, we have imaged a juxtamucosal alkaline layer, which converts to an acid layer when luminal pH is changed to values found in the fed stomach. Our results suggest a new model of gastric surface pH regulation, which includes a substantial change in the transporters that control surface pH. Our objective is to define the elements regulating luminal pH sensing and surface pH regulation in the stomach. Using primarily in vivo confocal microscopy of rat or mouse stomach, our first aim will define fundamental requirements for the stomach to sense and respond to luminal pH. We will a) define the timing and location of luminal pH change required for conversion from alkali to acid secretion, and b) test the role of luminal nutrients and buffers in surface pH regulation. In the second aim, we will question which molecules are transducers of the luminal pH stimulus that mediate the integrated regulation of both gastric acid and alkali secretion. We will focus on the role of somatostatin, PGE2, and capsaicin-sensitive afferent nerves containing CGRP. The role of somatostatin will be analyzed using antagonists and agonists selective for the somatostatin type 2 receptor (SST2) with parallel studies of SST2-knockout mice. The role of prostaglandin synthesis will be approached using selective inhibitors of known cycloxygenase (COX) isoforms, with parallel studies of COX-1 and COX-2 knockout mice. Capsaicin-sensitive afferents will be analyzed using vanilloid receptor agonists, CGRP receptor agonists and antagonists, with parallel studies of chemically deafferented animals.
The third aim will ask how gastric mucosal damage disrupts surface pH regulation. We will generate microscopic lesions in the gastric epithelium by two-photon microscopy. Using this new model of focal gastric damage, we will follow the disruptions in surface pH regulation and the tissue repair process in real time. We will ask if aspirin, a major cause of clinical mucosal damage, weakens the gastric barrier by disruption of luminal pH sensing and surface pH regulation in normal and COX-knockout mice. We will determine if aspirin affects the repair of focal lesions created by two-photon microscopy. Results will integrate understanding of gastric defense with regulation of acid and alkali secretion.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK054940-03
Application #
6381435
Study Section
General Medicine A Subcommittee 2 (GMA)
Program Officer
Hamilton, Frank A
Project Start
1999-08-15
Project End
2004-07-31
Budget Start
2001-08-01
Budget End
2002-07-31
Support Year
3
Fiscal Year
2001
Total Cost
$289,662
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Physiology
Type
Schools of Medicine
DUNS #
005436803
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Aihara, Eitaro; Matthis, Andrea L; Karns, Rebekah A et al. (2016) Epithelial Regeneration After Gastric Ulceration Causes Prolonged Cell-Type Alterations. Cell Mol Gastroenterol Hepatol 2:625-647
Wroblewski, Lydia E; Piazuelo, M Blanca; Chaturvedi, Rupesh et al. (2015) Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:720-30
Schumacher, Michael A; Aihara, Eitaro; Feng, Rui et al. (2015) The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol 593:1809-27
Schumacher, Michael A; Feng, Rui; Aihara, Eitaro et al. (2015) Helicobacter pylori-induced Sonic Hedgehog expression is regulated by NF?B pathway activation: the use of a novel in vitro model to study epithelial response to infection. Helicobacter 20:19-28
Aihara, Eitaro; Montrose, Marshall H (2014) Importance of Ca(2+) in gastric epithelial restitution-new views revealed by real-time in vivo measurements. Curr Opin Pharmacol 19:76-83
Aihara, Eitaro; Closson, Chet; Matthis, Andrea L et al. (2014) Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori. PLoS Pathog 10:e1004275
Aihara, Eitaro; Hentz, Courtney L; Korman, Abraham M et al. (2013) In vivo epithelial wound repair requires mobilization of endogenous intracellular and extracellular calcium. J Biol Chem 288:33585-97
Mahe, Maxime M; Aihara, Eitaro; Schumacher, Michael A et al. (2013) Establishment of Gastrointestinal Epithelial Organoids. Curr Protoc Mouse Biol 3:217-40
Demitrack, Elise S; Aihara, Eitaro; Kenny, Susan et al. (2012) Inhibitors of acid secretion can benefit gastric wound repair independent of luminal pH effects on the site of damage. Gut 61:804-11
Xue, Lin; Aihara, Eitaro; Wang, Timothy C et al. (2011) Trefoil factor 2 requires Na/H exchanger 2 activity to enhance mouse gastric epithelial repair. J Biol Chem 286:38375-82

Showing the most recent 10 out of 20 publications