The development of the mammalian pancreas represents an attractive model system to study the molecular signals that direct the commitment and differentiation of epithelial cells along different cell lineages. The pancreas consists of two distinct tissue types which carry out different essential functions. The endocrine pancreas regulates blood sugar levels by secreting glucagon or insulin whereas the exocrine pancreas secretes digestive enzymes into the duodenal part of the small intestine. Although many of the transcription factors responsible for endocrine pancreas formation have been identified and extensively studied, the molecular regulatory circuits that control the establishment and maintenance of the exocrine pancreas are just beginning to be elucidated. Towards a goal of identifying key transcriptional regulators of pancreatic development and function, a novel basic helix-loop-helix (bHLH) transcription factor (Mistl) recently was identified that accumulates to high levels in pancreatic exocrine cells. Mistl gene expression is initially detected at mouse embryonic day E10.5 in the developing pancreas and remains expressed to high levels in the acinar cells of the adult. Although the Mistl nuclear protein is capable of binding to specific DNA targets as a homodimer or as a heterodimer with other bHLH transcription factors, it lacks a typical transcription activation domain and instead can serve as a transcriptional repressor in some experimental systems. At this time, a true role for Mistl activity in pancreatic function has not been established, although its expression pattern and DNA binding capabilities suggest that Mistl likely serves as a key regulator of exocrine pancreas gene activity. In order to characterize further the biochemical properties of the Mistl protein and the role of Mistl in pancreatic development, studies are proposed to (1) examine the activity of Mistl using a pancreatic cell line model system, (2) identify pancreas-specific Mistl protein binding partners and (3) utilize mouse genetic approaches to create Mistl homozygous null mice and to identify Mistl target genes. In addition, targeted replacement of the Mistl gene with an activated K-ras allele will be performed to generate novel pancreatic cancer models. A complete characterization of Mistl activity in exocrine pancreatic cells will add critical new information regarding normal pancreatic development and function and may provide future strategies for combating several key human diseases, including acute pancreatitis and pancreatic cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK055489-01A1
Application #
6043452
Study Section
Cell Development and Function Integrated Review Group (CDF)
Program Officer
Serrano, Jose
Project Start
2000-03-01
Project End
2005-02-28
Budget Start
2000-03-01
Budget End
2001-02-28
Support Year
1
Fiscal Year
2000
Total Cost
$259,288
Indirect Cost
Name
Purdue University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
072051394
City
West Lafayette
State
IN
Country
United States
Zip Code
47907
Jakubison, Brad L; Schweickert, Patrick G; Moser, Sarah E et al. (2018) Induced PTF1a expression in pancreatic ductal adenocarcinoma cells activates acinar gene networks, reduces tumorigenic properties, and sensitizes cells to gemcitabine treatment. Mol Oncol 12:1104-1124
Lo, Hei-Yong G; Jin, Ramon U; Sibbel, Greg et al. (2017) A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes Dev 31:154-171
Hess, David A; Strelau, Katherine M; Karki, Anju et al. (2016) MIST1 Links Secretion and Stress as Both Target and Regulator of the UPR. Mol Cell Biol :
Jiang, Mei; Azevedo-Pouly, Ana; Deering, Tye G et al. (2016) MIST1 and PTF1 Collaborate in Feed-forward Regulatory Loops that Maintain the Pancreatic Acinar Phenotype in Adult Mice. Mol Cell Biol :
Pitarresi, Jason R; Liu, Xin; Sharma, Sudarshana M et al. (2016) Stromal ETS2 Regulates Chemokine Production and Immune Cell Recruitment during Acinar-to-Ductal Metaplasia. Neoplasia 18:541-52
Hayakawa, Yoku; Ariyama, Hiroshi; Stancikova, Jitka et al. (2015) Mist1 Expressing Gastric Stem Cells Maintain the Normal and Neoplastic Gastric Epithelium and Are Supported by a Perivascular Stem Cell Niche. Cancer Cell 28:800-814
Aure, Marit H; Konieczny, Stephen F; Ovitt, Catherine E (2015) Salivary gland homeostasis is maintained through acinar cell self-duplication. Dev Cell 33:231-7
Karki, Anju; Humphrey, Sean E; Steele, Rebecca E et al. (2015) Silencing Mist1 Gene Expression Is Essential for Recovery from Acute Pancreatitis. PLoS One 10:e0145724
Kim, SangWun; Lahmy, Reyhaneh; Riha, Chelsea et al. (2015) The basic helix-loop-helix transcription factor E47 reprograms human pancreatic cancer cells to a quiescent acinar state with reduced tumorigenic potential. Pancreas 44:718-27
Lee, Hoyoung; Kim, Yeji; Schweickert, Patrick G et al. (2014) A photo-degradable gene delivery system for enhanced nuclear gene transcription. Biomaterials 35:1040-9

Showing the most recent 10 out of 35 publications