G protein-coupled receptor (GPCR) drug development has traditionally focused on the concepts of orthosteric agonism and antagonism, in which receptor structure determines the nature of the downstream signal and ligand efficacy determines its intensity. Over the past decade, the newer paradigms of 'pluridimensional efficacy'and 'functional selectivity'have established that GPCRs mediate biological effects by engaging both classical G protein-dependent and novel G protein-independent signaling networks, and that ligand structure can 'bias'signaling by stabilizing active receptor states in different proportions than the native ligand. Such 'biased agonists'are novel pharmacological entities with the ability to qualitatively change GPCR signaling, in effect creating 'new receptors with distinct efficacy profiles driven by ligand structure. The promise of biased agonism resides with this ability to engender 'mixed'effects, and work during the current term of this project has demonstrated that arrestin-pathway selective agonism can produce potentially beneficial effects in vivo that are not attainable with conventional agonists or antagonists. At the same time, our data suggest that activating GPCRs in 'unnatural'ways can lead to unpredictable downstream biological consequences, especially when using ligands that selectively activate as-yet poorly characterized arrestin-dependent signaling networks. Efforts to develop biased therapeutics are thus hampered by an inability to predict the in vivo actions of arrestin-biased ligands based on their in vitro efficacy. The central hypothesis of this proposal is that the in vivo consequences arrestin-dependent signaling arises from activation of a relatively discrete and conserved set of biological responses that can be profiled in vitro using cell-based assays that are amenable to drug discovery research. During the next term, we plan to test this hypothesis using state-of-the-art biophysical and biochemical approaches combined with in vivo characterization of biased ligand action. Using intramolecular FlAsH BRET sensors that monitor conformational changes in arrestins following receptor activation, Aim 1 will examine the factors that determine the arrestin 'conformational signature'and determine the relationship between arrestin conformation and receptor/ligand efficacy in vitro. Using multi-dimensional efficacy profiling and SILAC-based whole cell phosphoproteomic analysis of signaling networks, Aim 2 will determine the range of biased ligand effects attainable in vitro and test whether the arrestin-dependent signaling network is conserved between different GPCRs.
Aim 3 will then 'close the loop'by determining the relationship between arrestin conformation, in vitro ligand efficacy, and the biological phenotype associated with in vivo exposure to arrestin-selective biased agonists. These experiments will employ biased PTH1 parathyroid hormone receptor ligands in a murine model of bone formation. Completion of this project will help establish a rational framework for relating in vitro ligand efficacy to the in vivo actions of arrestin pathway-selective biased GPCR ligands, providing information and tools that are critical to the development of novel biased therapeutics.

Public Health Relevance

The capacity of arrestin pathway-selective biased agonists to qualitatively change G protein-coupled receptor (GPCR) signaling holds the promise of new drugs that exploit ligand 'bias'to improve clinical effectiveness. This project will employ state-f-the-art state biophysical and biochemical approaches combined with in vivo characterization of biased ligand action to test the hypothesis that the in vivo consequences arrestin- dependent signaling arise from activation of a relatively discrete and conserved set of biological responses that can be captured in vitro using cell-based assays that are amenable to drug discovery research.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Integrative Signal Transduction Study Section (MIST)
Program Officer
Abraham, Kristin M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical University of South Carolina
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Luttrell, Louis M; Maudsley, Stuart; Gesty-Palmer, Diane (2018) Translating in vitro ligand bias into in vivo efficacy. Cell Signal 41:46-55
Lee, Mi-Hye; Appleton, Kathryn M; El-Shewy, Hesham M et al. (2017) S1P in HDL promotes interaction between SR-BI and S1PR1 and activates S1PR1-mediated biological functions: calcium flux and S1PR1 internalization. J Lipid Res 58:325-338
Peterson, Yuri K; Luttrell, Louis M (2017) The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 69:256-297
Morinelli, Thomas A; Luttrell, Louis M; Strungs, Erik G et al. (2016) Angiotensin II receptors and peritoneal dialysis-induced peritoneal fibrosis. Int J Biochem Cell Biol 77:240-50
Williams, Grace R; Bethard, Jennifer R; Berkaw, Mary N et al. (2016) Exploring G protein-coupled receptor signaling networks using SILAC-based phosphoproteomics. Methods 92:36-50
Maudsley, Stuart; Martin, Bronwen; Janssens, Jonathan et al. (2016) Informatic deconvolution of biased GPCR signaling mechanisms from in vivo pharmacological experimentation. Methods 92:51-63
Luttrell, Louis M (2016) GPCR Signaling Rides a Wave of Conformational Changes. Cell 167:602-603
Lee, Mi-Hye; Appleton, Kathryn M; Strungs, Erik G et al. (2016) The conformational signature of ?-arrestin2 predicts its trafficking and signalling functions. Nature 531:665-8
Wilson, Parker C; Fitzgibbon, Wayne R; Garrett, Sara M et al. (2015) Inhibition of Sphingosine Kinase 1 Ameliorates Angiotensin II-Induced Hypertension and Inhibits Transmembrane Calcium Entry via Store-Operated Calcium Channel. Mol Endocrinol 29:896-908
Maudsley, Stuart; Martin, Bronwen; Gesty-Palmer, Diane et al. (2015) Delineation of a conserved arrestin-biased signaling repertoire in vivo. Mol Pharmacol 87:706-17

Showing the most recent 10 out of 63 publications