Congenital Disorders of Glycosylation (CDG) are rare inherited defects in sugar chain (glycan) synthesis and their addition to protein. All 14 types (different genes) of CDG-I patients have mutations in different genes, but share a common lesion: lack of full N-glycosylation site occupancy. Likewise, patients share many symptoms, but show broad clinical variations both within and between different types. There are no vertebrate animal models for these disorders and only one Type, CDG-Ib, has a therapy. Here we propose to analyze the first viable CDG-I mouse model, evaluate the single known therapy, and apply that therapy to currently untreatable types of CDG. CDG-Ib patients have insufficient phosphomannose isomerase (MPI, Fru-6-P_>Man-6-P) activity and develop liver dysfunction, fibrosis, failure to thrive, protein-losing enteropathy and coagulopathy. However, dietary supplements of mannose bypass the defect by increasing the flux of Mannose through a minor biosynthetic pathway (Man`Man-6-P) thus relieving nearly all symptoms. CDG-Ia patients, who are deficient in PMM2 (Man-6-P`Man-1-P), do not respond to mannose therapy because they catabolize Man-6-P via robust MPI. Note that PMM2 and MPI compete for the same critical substrate, Man-6-P, and their ratio determines its metabolic flux. We engineered a hypomorphic Mpi allele to create the first viable potential CDG-I mouse model. Analysis of these mice to date shows progressive hepatopathology and increased enteric protein loss.
In Aim 1 we will determine whether these mice show pathology modeling CDG-Ib patients.
Aim 2 will determine how hypomorphic lines respond to environmental stresses.
Aim 3 will determine whether mannose rescues (prevents and/or reverses) the susceptibility of hypomorphic mice to pathology, specifically, protein-losing enteropathy and hepatic pathology. Since the various CDG types share many of the pathologies, successful treatment of one type may establish a paradigm to treat others. Therefore, in Aim 4 we will breed our Mpi-hypomorphic mice with Pmm2-deficient mice that currently die in utero. Based on highly encouraging preliminary data, we predict that providing mannose and genetically reducing Mpi activity in Pmm2-deficient mice will rescue the lethal phenotype by increasing the metabolic flux of Man-6-P into the depleted glycosylation pathway. If successful, this approach will show that redirecting mannose flux into the depleted glycosylation pathway has therapeutic potential and would empower high-throughput screening search for mannose flux-enhancing compounds for several types of CDG.

Public Health Relevance

We will study the first mouse model of a rare human genetic disorder in protein glycosylation, offer a likely therapy, and apply the model/therapy to treat other human glycosylation disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK055615-10
Application #
8053250
Study Section
Therapeutic Approaches to Genetic Diseases (TAG)
Program Officer
Mckeon, Catherine T
Project Start
1999-08-01
Project End
2014-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
10
Fiscal Year
2011
Total Cost
$382,435
Indirect Cost
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Sharma, Vandana; Smolin, Jamie; Nayak, Jonamani et al. (2018) Mannose Alters Gut Microbiome, Prevents Diet-Induced Obesity, and Improves Host Metabolism. Cell Rep 24:3087-3098
Pfeffer, Stefan; Dudek, Johanna; Schaffer, Miroslava et al. (2017) Dissecting the molecular organization of the translocon-associated protein complex. Nat Commun 8:14516
Simon, Mariella T; Ng, Bobby G; Friederich, Marisa W et al. (2017) Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency. Mitochondrion 34:84-90
Harshman, Lyndsay A; Ng, Bobby G; Freeze, Hudson H et al. (2016) Congenital nephrotic syndrome in an infant with ALG1-congenital disorder of glycosylation. Pediatr Int 58:785-8
Freeze, Hudson H (2016) Perhaps a wee bit of sugar would help. Nat Genet 48:705-7
Chan, Barden; Clasquin, Michelle; Smolen, Gromoslaw A et al. (2016) A mouse model of a human congenital disorder of glycosylation caused by loss of PMM2. Hum Mol Genet 25:2182-2193
Ng, Bobby G; Shiryaev, Sergey A; Rymen, Daisy et al. (2016) ALG1-CDG: Clinical and Molecular Characterization of 39 Unreported Patients. Hum Mutat 37:653-60
Ng, Bobby G; Wolfe, Lynne A; Ichikawa, Mie et al. (2015) Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. Hum Mol Genet 24:3050-7
Sharma, Vandana; Ichikawa, Mie; Freeze, Hudson H (2014) Mannose metabolism: more than meets the eye. Biochem Biophys Res Commun 453:220-8
Ichikawa, Mie; Scott, David A; Losfeld, Marie-Estelle et al. (2014) The metabolic origins of mannose in glycoproteins. J Biol Chem 289:6751-61

Showing the most recent 10 out of 84 publications