The trafficking of HSCs / progenitors from the bone marrow (BM) to the bloodstream represents the basis of modern transplantation procedures. We have characterized in the past funding cycle the mechanisms and biological impact of signals from the sympathetic nervous system (SNS) on HSC / progenitor egress from the BM. We have recently discovered that HSCs are released under state-state conditions in a circadian manner through rhythmic release of noradrenaline emanating from SNS nerve terminals in the BM whose signals are transmitted into stromal cells through the b3 adrenergic receptor. In preliminary studies, we have identified that the cellular target of the SNS in the BM is a bona fide self-renewing mesenchymal stem cell (MSC) marked by Nestin expression. In addition, we have found that these Nestin+ cells are anatomically and functionally associated with CD150+ CD48- Lin- HSCs near blood vessels of the BM. These putative Nestin+ niche cells express high levels of core genes regulating HSC retention (Cxcl12, Kit ligand, Vcam-1, Angiopoietin-1), which are downregulated by the administration of the HSC mobilizer granulocyte colony- stimulating factor (G-CSF) or b3 adrenergic receptor (Adrb3) activation. Further, our preliminary studies suggest that BM monocytes / macrophages (MO/MV) exert the opposite effect, enhancing the expression of HSC retention signals. Based on our progress and these preliminary data, we have hypothesized that the BM niche is constituted of the two stem cells, mesenchymal and hematopoietic, inhabiting its space, and is regulated by opposing signals from the SNS and macrophages. This hypothesis will be tested with three Specific Aims.
In Specific Aim 1, we will evaluate the circadian influence on HSC / progenitor homing to BM. We will assess the effect of local denervation, the role of adrenergic receptors, and the function of Nestin+ niche cells. Elucidation of optimal circadian time and the mechanisms entraining oscillations in homing efficiencies may have profound impact on transplantation biology.
In Specific Aim 2, we will assess whether chemotherapy-induced neurotoxicity alters HSC niche function. Our preliminary studies suggest that a lesion to the SNS impairs the regeneration of the niche and recovery of hematopoiesis following a stressful challenge such as stem cell transplantation or 5-fluorouracyl (5FU) administration. We will assess the effect of the neuropathy on HSC / progenitor mobilization and niche function in a clinically relevant model (cisplatin therapy), and evaluate the effect of neuroprotection on HSC niche function.
In Specific Aim 3, we will determine the role of the MO/MV lineage in the regulation of Nestin+ niche cells and HSC / progenitor retention. Our preliminary studies indicate that MO/MV cells contribute to HSC / progenitor retention in the BM by promoting the expression of key stem cell niche genes by Nestin+ cells (Cxcl12, Kit ligand, Angiopoietin-1, Vcam-1) that retain HSC in the BM microenvironment. We have developed an in vitro system to identify the molecular mechanism mediating the crosstalk between MO/MV cells and Nestin+ niche cells. These studies may lead to the identification of a novel pathway regulating the stem cell niche and the trafficking of HSCs.

Public Health Relevance

Studies conducted under this project have revealed that the bone marrow niche consists of the paring of the two stem cells, mesenchymal and hematopoietic, that inhabit the marrow. Here, we will explore further the hypothesis that the retention of hematopoietic stem and progenitor cells in the niche is regulated by differing signals from the sympathetic nervous system and macrophages.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK056638-13
Application #
8516015
Study Section
Hematopoiesis Study Section (HP)
Program Officer
Bishop, Terry Rogers
Project Start
2000-03-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
13
Fiscal Year
2013
Total Cost
$329,070
Indirect Cost
$130,835
Name
Albert Einstein College of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Gao, Xin; Xu, Chunliang; Asada, Noboru et al. (2018) The hematopoietic stem cell niche: from embryo to adult. Development 145:
Maryanovich, Maria; Takeishi, Shoichiro; Frenette, Paul S (2018) Neural Regulation of Bone and Bone Marrow. Cold Spring Harb Perspect Med 8:
Pinho, Sandra; Marchand, Tony; Yang, Eva et al. (2018) Lineage-Biased Hematopoietic Stem Cells Are Regulated by Distinct Niches. Dev Cell 44:634-641.e4
Xu, Chunliang; Gao, Xin; Wei, Qiaozhi et al. (2018) Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun 9:2449
Maryanovich, Maria; Zahalka, Ali H; Pierce, Halley et al. (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med 24:782-791
Wei, Qiaozhi; Frenette, Paul S (2018) Niches for Hematopoietic Stem Cells and Their Progeny. Immunity 48:632-648
Boulais, Philip E; Mizoguchi, Toshihide; Zimmerman, Samuel et al. (2018) The Majority of CD45- Ter119- CD31- Bone Marrow Cell Fraction Is of Hematopoietic Origin and Contains Erythroid and Lymphoid Progenitors. Immunity 49:627-639.e6
Guarnerio, Jlenia; Mendez, Lourdes Maria; Asada, Noboru et al. (2018) A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun 9:66
Pierce, Halley; Zhang, Dachuan; Magnon, Claire et al. (2017) Cholinergic Signals from the CNS Regulate G-CSF-Mediated HSC Mobilization from Bone Marrow via a Glucocorticoid Signaling Relay. Cell Stem Cell 20:648-658.e4
Zahalka, Ali H; Arnal-Estapé, Anna; Maryanovich, Maria et al. (2017) Adrenergic nerves activate an angio-metabolic switch in prostate cancer. Science 358:321-326

Showing the most recent 10 out of 73 publications