Estrogens play key roles in the normal development and function of the reproductive organs, mammary glands, bone, heart, vasculature, adipose, and central nervous system, as well as common dysfunctions of the same tissues. The molecular actions of estrogens are mediated through estrogen receptor proteins (e.g., ER?), which are nuclear receptors (NRs) that function as important regulators of cell type-specific patterns of gene expression. ER? acts as a ligand-regulated transcription factor that binds to many thousands of ER? binding sites across the genome, collectively called the ER? cistrome. The binding of ER? to genomic DNA promotes the coordinated recruitment of coregulator proteins that establish an active enhancer, leading to chromatin looping and target gene transcription. Recent studies have shown that active enhancers are transcribed bidirectionally, generating enhancer RNAs (eRNA), although the functions of enhancer transcription and eRNAs are unknown. In spite of emerging concepts, advanced methodologies, and a greater appreciation of the biology of enhancers in physiology and disease, many important questions about ER? enhancers remain. We still do not know (1) the molecular details of how ER? enhancers are assembled, (2) the kinetics of enhancer assembly and disassembly, (3) the underlying mechanisms of looping to, and activation of, target genes, (4) the specific roles of enhancer-associated coregulators and eRNAs, and (5) the function of mammalian enhancers in vivo. The long-term objective of these studies is to achieve a better understanding of the molecular mechanisms by which liganded ERs control global patterns of gene expression to regulate biological outcomes. Our broad hypothesis is that ligand- and DNA-bound ER? acts as a nucleation site and scaffold for the assembly of a multi-protein coregulator complex that drives looping to and communication with estrogen-regulated target genes. The genes, in turn, determine the estrogen-dependent biological responses. We proposed to explore the molecular mechanisms and kinetics of ER? enhancer assembly, as well as the biological roles of ER? enhancers in vivo, by using an integrated set of molecular, biochemical, genomic, proteomic, and genetic approaches. Our specific objectives are to: (1) Determine the molecular mechanisms and kinetics of ER? enhancer assembly (Aim 1); (2) Determine the potential roles of eRNAs and eRNA- interacting proteins in ER? enhancer assembly and function (Aim 2); and (3) Explore the assembly and function ER? enhancers in vivo. Our studies on the molecular mechanisms and functions of ER? enhancers will elaborate a facet of the estrogen signaling pathway that remains largely unexplored. Increased knowledge of the molecular actions of estrogens will suggest new ways to prevent, diagnose, and treat estrogen-related diseases. In addition, these studies will shed light on gene regulation by related transcription factors.

Public Health Relevance

Estrogens play key roles in the normal development and function of reproductive organs, mammary glands, bone, heart, vasculature, adipose, and the central nervous system, as well as common dysfunctions of the same tissues. Increased understanding the molecular mechanisms of estrogen signaling will aid in finding better ways to prevent, diagnose, and treat estrogen-related diseases, as well as suggest new ways to study the biology of estrogen signaling.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK058110-21
Application #
9976513
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Silva, Corinne M
Project Start
2000-09-15
Project End
2021-05-31
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
21
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Ryu, Keun Woo; Nandu, Tulip; Kim, Jiyeon et al. (2018) Metabolic regulation of transcription through compartmentalized NAD+ biosynthesis. Science 360:
Franco, Hector L; Nagari, Anusha; Malladi, Venkat S et al. (2018) Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis. Genome Res 28:159-170
Danko, Charles G; Choate, Lauren A; Marks, Brooke A et al. (2018) Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. Nat Ecol Evol 2:537-548
Willcockson, Alexandra R; Nandu, Tulip; Liu, Cheuk-Lun et al. (2018) Transcriptome signature identifies distinct cervical pathways induced in lipopolysaccharide-mediated preterm birth. Biol Reprod 98:408-421
Murakami, Shino; Nagari, Anusha; Kraus, W Lee (2017) Dynamic assembly and activation of estrogen receptor ? enhancers through coregulator switching. Genes Dev 31:1535-1548
Nagari, Anusha; Murakami, Shino; Malladi, Venkat S et al. (2017) Computational Approaches for Mining GRO-Seq Data to Identify and Characterize Active Enhancers. Methods Mol Biol 1468:121-38
Luo, Xin; Ryu, Keun Woo; Kim, Dae-Seok et al. (2017) PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBP? and Modulating Its Transcriptional Activity. Mol Cell 65:260-271
Doiguchi, Masamichi; Nakagawa, Takeya; Imamura, Yuko et al. (2016) SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation. Sci Rep 6:20179
Kraus, W Lee (2016) Editorial: Centennial Celebration - A Focus on Endocrine Disrupting Chemicals… One Hundred Years in the Making. Mol Endocrinol 30:827-8
Franco, Hector L; Nagari, Anusha; Kraus, W Lee (2015) TNF? signaling exposes latent estrogen receptor binding sites to alter the breast cancer cell transcriptome. Mol Cell 58:21-34

Showing the most recent 10 out of 52 publications