Hepatic insulin action: Role of the pentose cycle. Insulin stimulation of PI3-Kinase results in an increase in phosphatidylinositol-3,4,5 tri-phosphate (PIP3) formation, which has direct inhibitory effects on glucose-6-phosphatase (G6Pase) activity, as well as initiating the activation of a signaling effector chain, via Akt activation and GSK-3 inhibition, that stimulates glycolysis, glycogen storage, and pentose phosphate pathway (PPP) flux, and inhibits gluconeogenesis. The control of substrate flux between the hexose phosphate pool and the triose phosphate pool has been recognized as the key mechanism for insulin's regulation of HGP. The hexose phosphate pool and the triose phosphate pool are in equilibrium through the oxidative and non-oxidative branches of the pentose phosphate pathway (PPP). Our 13C mass isotopomer distribution analysis (MIDA) flux experiments indicate that insulin's stimulation of PI3-K coordinates flux between the glycolytic/gluconeogenic pathways and the pentose phosphate pathway (PPP) via PI3-K's inhibition of G6Pase. Insulin can upregulate flux through the non-oxidative limb of the PPP, or the oxidative limb via glucose-6-phosphate dehydrogenase (G6PDH), raising xylulose-5-phosphate (X5P) levels, which can stimulate glycolysis. G6PDH is also the principal source of NADPH, which keeps the cytoplasm in a reduced state. Studies suggest that when the liver cytoplasm is more oxidized, HGP is increased. Hypothesis: Insulin-stimulated PI3-K stimulates PPP flux, and the stimulation of PPP flux enhances the function of insulin action.
Specific aims for hypothesis testing: To quantitate the roles, and actions on the flux between the hexose phosphate and the triose phosphate pools, of PI3-K and its signaling effectors/modulators Akt, MMAC, a phosphatidylinositol 3- phosphatase, and GSK-3, via adenoviral mediated overexpression, and selected inhibitors of PI3-K signaling. Specific 13C labeled substrates will be used to determine flux passing to and from the G-6-P pool using mass isotopomer analysis in primary rat hepatocyte culture. These studies may identify areas where defects in hepatic insulin action occur, and where hepatic-based gene therapies can be directed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK058132-02
Application #
6621580
Study Section
Metabolism Study Section (MET)
Program Officer
Blondel, Olivier
Project Start
2002-03-15
Project End
2007-02-28
Budget Start
2003-03-01
Budget End
2004-02-29
Support Year
2
Fiscal Year
2003
Total Cost
$295,972
Indirect Cost
Name
University of California Los Angeles
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Nie, Wenna; Yan, Leyu; Lee, Yie H et al. (2016) Advanced mass spectrometry-based multi-omics technologies for exploring the pathogenesis of hepatocellular carcinoma. Mass Spectrom Rev 35:331-49
Vaitheesvaran, B; Hartil, K; Navare, A et al. (2014) Role of the tumor suppressor IQGAP2 in metabolic homeostasis: Possible link between diabetes and cancer. Metabolomics 10:920-937
Haeusler, Rebecca A; Hartil, Kirsten; Vaitheesvaran, Bhavapriya et al. (2014) Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nat Commun 5:5190
Miao, Ji; Haas, Joel T; Manthena, Praveen et al. (2014) Hepatic insulin receptor deficiency impairs the SREBP-2 response to feeding and statins. J Lipid Res 55:659-67
Yang, Yingjuan; Tarabra, Elena; Yang, Gong-She et al. (2013) Alteration of de novo glucose production contributes to fasting hypoglycaemia in Fyn deficient mice. PLoS One 8:e81866
Laurent, Gaƫlle; German, Natalie J; Saha, Asish K et al. (2013) SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell 50:686-98
Kurland, Irwin J; Accili, Domenico; Burant, Charles et al. (2013) Application of combined omics platforms to accelerate biomedical discovery in diabesity. Ann N Y Acad Sci 1287:1-16
Vaitheesvaran, Bhavapriya; Yang, Li; Hartil, Kirsten et al. (2012) Peripheral effects of FAAH deficiency on fuel and energy homeostasis: role of dysregulated lysine acetylation. PLoS One 7:e33717
Yang, Li; Vaitheesvaran, Bhavapriya; Hartil, Kirsten et al. (2011) The fasted/fed mouse metabolic acetylome: N6-acetylation differences suggest acetylation coordinates organ-specific fuel switching. J Proteome Res 10:4134-49
Zhang, Jin; Khvorostov, Ivan; Hong, Jason S et al. (2011) UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J 30:4860-73

Showing the most recent 10 out of 22 publications