Chemoreceptive and mechanoreceptive mechanisms in the duodenum play an important role in the regulation of gastric motility. Following ingestion of a meal as chyme enters the duodenum, stimulation by osmolarity and mechanical distension may activate vagal affrent fibers in the mucosa resulting in gastric relaxation and inhibition of gastric motility. Abnormalities in this neural pathway may be a cause of functional dyspepsia. Currently little is known about the neural circuits responsible for these vago-vagal reflexes. Based on our preliminary studies, we hypothesize that hyperosmolar chyme and mechanical distension stimulate the release of serotonin (5-HT) from intestinal EC cells which act as a sensor for luminal stimuli. 5-HT in turn activates vagal afferent fibers releasing substance P or CGRP which then stimulates interneurons in the nucleus tractus solitarius (NTS). Two groups of NTSA neurons interacting with the dorsal vagal motor nucleus (DMNV) will be stimulated: (i) activation of GABAergic neurons will inhibit DMNV cholinergic neurons which synapse with intragastric cholinergic neurons and (ii) stimulation of glutaminergic neurons will activate those DMNV neurons which synapse with intragastric nitric oxide neurons. In this manner the vagal afferents may concurrently excite and inhibit vagal efferent transmission producing dysfacilitation of cholinergic and activation of NANC input to the stomach to optimize gastric relaxation. To test this hypothesis, we will examine the neural pathways utilized by duodenal distension and stimulation by hyperosmolar solutions to mediate gastric relaxation. The role of 5-HT in the mediation of activation of vagal sensory fibers by these duodenal stimuli will be investigated. We will characterize the chemical codings by intracellular recording and labeling techniques. In vitro electrophysiological analysis of the NTS and DMNV synaptic relationship will be performed using medullary slices. The possibility of glutamate and GABA as excitatory and inhibitory neurotransmitters to turn on and off populations of neurons in the DMNV during activation by serotonin or duodenal stimulation will be assessed. These studies will provide a detailed characterization of the neural components of the vago-vagal circuit activated by duodenal distension and hyperosmolar solution to mediate gastric relaxation. This information may help to elucidate the pathophysiology of functional dyspepsia and lead to the development of novel therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK058913-04
Application #
6771689
Study Section
Special Emphasis Panel (ZRG1-SSS-3 (01))
Program Officer
May, Michael K
Project Start
2001-09-20
Project End
2006-04-30
Budget Start
2004-05-01
Budget End
2005-04-30
Support Year
4
Fiscal Year
2004
Total Cost
$322,472
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Zhou, Shi-Yi; Gillilland 3rd, Merritt; Wu, Xiaoyin et al. (2018) FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J Clin Invest 128:267-280
Lee, Allen A; Owyang, Chung (2017) Sugars, Sweet Taste Receptors, and Brain Responses. Nutrients 9:
Grabauskas, Gintautas; Owyang, Chung (2017) Plasticity of vagal afferent signaling in the gut. Medicina (Kaunas) 53:73-84
Grabauskas, Gintautas; Wu, Xiaoyin; Song, Il et al. (2016) Increased Activation of the TRESK K+ Mediates Vago-Vagal Reflex Malfunction in Diabetic Rats. Gastroenterology 151:910-922.e7
Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Steinberg, Joel L et al. (2016) Elderly patients have an altered gut-brain axis regardless of the presence of cirrhosis. Sci Rep 6:38481
Grabauskas, Gintautas; Wu, Xiaoyin; Lu, Yuanxu et al. (2015) KATP channels in the nodose ganglia mediate the orexigenic actions of ghrelin. J Physiol 593:3973-89
Zhou, Hui; Zhou, Shiyi; Gao, Jun et al. (2015) Upregulation of bile acid receptor TGR5 and nNOS in gastric myenteric plexus is responsible for delayed gastric emptying after chronic high-fat feeding in rats. Am J Physiol Gastrointest Liver Physiol 308:G863-73
Gao, Jun; Gillilland 3rd, Merritt G; Owyang, Chung (2014) Rifaximin, gut microbes and mucosal inflammation: unraveling a complex relationship. Gut Microbes 5:571-5
Heldsinger, Andrea; Grabauskas, Gintautas; Wu, Xiaoyin et al. (2014) Ghrelin induces leptin resistance by activation of suppressor of cytokine signaling 3 expression in male rats: implications in satiety regulation. Endocrinology 155:3956-69
Xu, Dabo; Gao, Jun; Gillilland 3rd, Merritt et al. (2014) Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology 146:484-96.e4

Showing the most recent 10 out of 16 publications