Overall objective of the proposal is to delineate the role of a proximal tubular specific enzyme, i.e., myo- inositol oxygenase (MIOX), in tubulo-interstitial pathobiology in the context of diabetic nephropathy (DN). The DN is characterized by perturbation in various metabolic/cellular signaling pathways in renal cells resulting in the generation of reactive oxygen species (ROS). The latter have emerged as central to the pathogenesis of DN. The metabolic/signaling events have been delineated largely in renal glomerular cells, and information relating to tubulointerstitial cells is limited. Glucose responsie MIOX catabolizes myo-inositol to D-glucuronate via Glucuronate-Xylulose (GX) pathway, as described in """"""""eye lens"""""""", and its metabolites enter pentose pathway. The GX pathway initiated by MIOX leads to """"""""redox imbalance"""""""" with perturbed NADPH:NADP+ and NAD+:NADH ratios at 4 steps [Fig. 1], akin to polyol pathway;suggesting that its activation would induce oxidant and hypoxic stress culminating into an increased synthesis of ECM proteins and tubulo-interstitial injury in DN [Fig. 2]. Perturbed NAD+/NADH ratio would also cause depletion of NAD+, as a result the activity of NAD-dependent deacetylases, Sirutins, are compromised. Targets of Sirutins include FOXO family transcription factors and transcriptional coactivator PGC-1?, which modulate mitochondrial biogenesis and various antioxidant genes. With these perturbations the tubular cells are likely to undergo energy stress and apoptosis. Our published (JBC 2011, AJP 2010) and preliminary data suggest that ROS are generated in the GX pathway, which in turn increases the transcription of MIOX, thus setting up cyclic generation of ROS. Data also suggest that GX pathway exist in the kidney [Fig. 4], and oxidant stress does occur in the tubular compartment in patients with DN [Fig. 3]. Also, MIOX over-expression in high glucose leads to accentuated synthesis of ECM proteins [Fig. 10]. With this background and to achieve objectives of the proposal the following 3 specific aims are proposed.
AIM I is to delineate mechanisms by which MIOX overexpression in vitro in tubular cells leads to accentuation of the oxidant stress, mitochondrial dysfunctions and ECM synthesis in the presence of high glucose. Status of NADPH:NADP+ &NAD+:NADH ratios, GSH, NOX4, PKC, TGF-, SIRTs, transcription factors, mitochondrial dynamics, and pro- and anti-apoptotic genes will be assessed. Specific inhibitors/activators will be used to test the specificity of MIOX effects.
AIM II is to characterie in vivo MIOX-induced GX pathway, redox imbalance and downstream signaling events leading to dysfunctions of SIRTs and mitochondria, apoptosis and tubulo- interstitial fibrosis. CD1 mice with STZ-induced diabetes and mice over-expressing MIOX cross bred with Akita mice will be used.
AIM III is to determine if MIOX gene deletion leads to amelioration in renal dysfunctions and progression to tubulo-interstitial injury in STZ-induced diabetes in heterozygote (+/-) mice and when the mutant Null (-/-) mice are cross bred with Akita mice. It is anticipated that the characterization of GX-SIRT pathway would aid in devising novel therapeutic strategies to decelerate tubulo-interstitial injury in DN.
Diabetic nephropathy (DN) is one of the principal causes of end-stage renal disease (ESRD) leading to dialysis dependency in the US population, thus adding substantial amount of burden to the national expenditure. DN has a relentless course when both the glomerular and tubulo-interstitial compartments are affected. In fact, tubulo-interstitial changes in DN correlate relatively better with the derangements in renal functional parameters. The premise of this application is to delineate pathogenesis of tubulo-interstitial injury in the context of DN. Evidence is presented in this application that certain pathways are specific to the tubular compartment, and they are responsible for such an injury leading to tubulo-interstitial dysfunctions/fibrosis. Interruption of various events relevant to these pathway by pharmacologic or genetic means hold promise as novel therapeutic strategies to ameliorate the progression of diabetic nephropathy.
Showing the most recent 10 out of 74 publications