Epithelial-mesenchymal interactions are critical for the normal morphogenesis and maintenance of the crypt-villus axis. The molecules that regulate these reciprocal interactions have only recently begun to be described. We have identified a mesenchymal protein, epimorphin, as a putative regulator of epithelial morphogenesis. We show that this molecule has profound effects on morphogenesis and differentiation of the intestinal epithelium. However, the mechanism by which epimorphin exerts its effects is unknown, and the in vivo effects of inhibiting epimorphin expression in whole animals have not yet been described. Our hypothesis for this application is that epimorphin's effects are mediated, at least in part, by regulating the secretion o soluble substances that are important in morphogenesis. Based on our preliminary data, one such candidate may be sonic hedgehog (Shh)a critical regulator of gut-endodermal-mesenchymal signaling in early gut ontogeny. We show that blocking hedgehog signaling pathways by antibody infusion produces profound changes in postnatal gut morphology, with disorganized villi, runting and early death. These effects are recapitulated in vitro in an epithelial-myofibroblast co-culture model developed in our lab. The major hypotheses of the current proposal are: 1. Intestinal myofibroblasts produce epimorphin which regulates the formation and maintenance of the crypt-villus axis. 2. Hedgehog signaling pathways are required for the maintenance of the postnatal crypt-villus axis.
The Specific Aims are: 1. Determine the mechanisms by which epimorphin induces crypt-villus morphogenesis and cytodifferentiation. 2. Determine the in vivo function of epimorphin by creating epimorphin -/- mice. 3. Determine whether the effects of hedgehog on postnatal epithelial morphogenesis and differentiation are mediated via epithelial-mesenchymal interactions, using an epithelial-myofibroblast co-culture system. The significance of this application is based on our recent identification of a mesenchymal/myofibroblast gene that plays an important role in the regulation of crypt-villus axis morphogenesis. A role for hedgehog signaling in postnatal gut ontogeny has also been established and will be further examined. Specific to the research scope for this RFA, these studies will characterize epithelial-mesenchymal cross talk underlying normal development. We will also establish a novel model, the epimorphin null mouse, for characterizing the molecular properties of the mesenchymal cell populations that regulate epithelial cell renewal in the developing and adult GI tract.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK061216-06
Application #
6911734
Study Section
Special Emphasis Panel (ZDK1-GRB-4 (O1))
Program Officer
May, Michael K
Project Start
2001-09-30
Project End
2007-03-31
Budget Start
2005-07-01
Budget End
2007-03-31
Support Year
6
Fiscal Year
2005
Total Cost
$300,790
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lu, Jianyun; Garcia, Amy M; Geisman, Taylor et al. (2016) Proline Absorption and SGK1 Expression are Inhibited in Intestinal Tis7 Transgenic Mice. Cell Physiol Biochem 38:1532-43
Garcia, Amy M; Wakeman, Derek; Lu, Jianyun et al. (2014) Tis7 deletion reduces survival and induces intestinal anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 307:G642-54
Shaker, Anisa; Gargus, Matthew; Fink, Julie et al. (2014) Epimorphin(-/-) mice are protected, in part, from acute colitis via decreased interleukin 6 signaling. Transl Res 164:70-83
van den Brink, Gijs R; Rubin, Deborah C (2013) Foxf2: a mesenchymal regulator of intestinal adenoma development. Gastroenterology 144:873-6
Swietlicki, Elzbieta A; Bala, Shashi; Lu, Jianyun et al. (2013) Epimorphin deletion inhibits polyposis in the Apcmin/+ mouse model of colon carcinogenesis via decreased myofibroblast HGF secretion. Am J Physiol Gastrointest Liver Physiol 305:G564-72
Shaker, Anisa; Binkley, Jana; Darwech, Isra et al. (2013) Stromal cells participate in the murine esophageal mucosal injury response. Am J Physiol Gastrointest Liver Physiol 304:G662-72
Shaker, Anisa; Swietlicki, Elzbieta A; Wang, Lihua et al. (2010) Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion. J Clin Invest 120:2081-93
Shaker, Anisa; Rubin, Deborah C (2010) Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res 156:180-7
Yu, Cong; Jiang, Shujun; Lu, Jianyun et al. (2010) Deletion of Tis7 protects mice from high-fat diet-induced weight gain and blunts the intestinal adaptive response postresection. J Nutr 140:1907-14
Wang, Lihua; Tang, Yuzhu; Rubin, Deborah C et al. (2007) Chronically administered retinoic acid has trophic effects in the rat small intestine and promotes adaptation in a resection model of short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 292:G1559-69

Showing the most recent 10 out of 17 publications