The autoimmune thyroid diseases (AITD) are very common with a prevalence of - 5 percent. They include Hashimoto's thyroiditis (HT), which manifests by hypothyroidism, and Graves disease (GD), which causes hyperthyroidism. The mechanisms initiating the AITD are not completely understood. Abundant data point to a genetic susceptibility to AITD, and the applicant, has identified linkages for several AITD susceptibility loci. In the past four years we have performed genome scans on two data sets of multiplex families (102 families, 540 individuals), and mapped 8 loci showing evidence for linkage with AITD. In two of the loci we identified and investigated putative AITD susceptibility genes (CTLA-4 and CD4O}. The focus of the current proposal is four of the eight loci which showed the strongest evidence for linkage with AITD. The goals of our study are to identify and characterize the AITD susceptibility genes in these four loci.
The specific aims of the proposed study are: 1) To resolve the genetic heterogeneity in our families at the 4 linked loci which are the focus of our studies. At all 4 loci the linkage analysis showed evidence of heterogeneity and resolving it will facilitate identification of the AITD susceptibility genes. We will subdivide the families according to various parameters (e.g. age of onset of disease), analyze these subsets separately for linkage with the four loci, and apply the Predivided-Sample Test. Resolving heterogeneity and identifying subsets of families that are uniformly linked with these loci will amplify the power of the subsequent single nucleotide polymorphism (SNP) and fine mapping analyses (Specific Aims 2 & 3); 2) To analyze two important genes (thyroglobulin and TGFBeta3 which are located at 2 of the linked loci, and are themselves linked and associated with AITD. We will analyze the sequences of the thyroglobulin and TGF-Beta3 genes in order to identify disease-specific SNP's; 3) To fine map two additional linked loci and narrow the linked regions in order to determine appropriate candidate genes for future analyses. We have the capacity and experience to perform these studies. Our flexible relational database (lngresTM) facilitates complex linkage and association analyses. We use two ABI-310 sequencers for genotyping and sequencing, and we have experience at SNPing genes and fine mapping linked regions. We expect that these studies will lead to the identification of gene sequence variations contributing to the expression of AITD. This will allow us to understand the mechanisms initiating these diseases, and hopefully will lead to the development of new therapies targeted at the mechanisms initiating AITD.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK061659-01
Application #
6465745
Study Section
Endocrinology Study Section (END)
Program Officer
Akolkar, Beena
Project Start
2002-07-01
Project End
2007-06-30
Budget Start
2002-07-01
Budget End
2003-06-30
Support Year
1
Fiscal Year
2002
Total Cost
$323,745
Indirect Cost
Name
Mount Sinai School of Medicine
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
114400633
City
New York
State
NY
Country
United States
Zip Code
10029
Faustino, Larissa C; Lombardi, Angela; Madrigal-Matute, Julio et al. (2018) Interferon-? Triggers Autoimmune Thyroid Diseases via Lysosomal-Dependent Degradation of Thyroglobulin. J Clin Endocrinol Metab 103:3678-3687
Li, Cheuk Wun; Osman, Roman; Menconi, Francesca et al. (2017) Flexible peptide recognition by HLA-DR triggers specific autoimmune T-cell responses in autoimmune thyroiditis and diabetes. J Autoimmun 76:1-9
Blackard, Jason T; Kong, Ling; Lombardi, Angela et al. (2017) A preliminary analysis of hepatitis C virus in pancreatic islet cells. Virol J 14:237
Lee, Hanna J; Lombardi, Angela; Stefan, Mihaela et al. (2017) CD40 Signaling in Graves Disease Is Mediated Through Canonical and Noncanonical Thyroidal Nuclear Factor ?B Activation. Endocrinology 158:410-418
Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason et al. (2017) Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells. J Clin Endocrinol Metab 102:689-697
Li, Cheuk Wun; Menconi, Francesca; Osman, Roman et al. (2016) Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis. J Biol Chem 291:4079-90
Lombardi, Angela; Menconi, Francesca; Greenberg, David et al. (2016) Dissecting the Genetic Susceptibility to Graves' Disease in a Cohort of Patients of Italian Origin. Front Endocrinol (Lausanne) 7:21
Tomer, Yaron; Dolan, Lawrence M; Kahaly, George et al. (2015) Genome wide identification of new genes and pathways in patients with both autoimmune thyroiditis and type 1 diabetes. J Autoimmun 60:32-9
Lombardi, Angela; Inabnet 3rd, William Barlow; Owen, Randall et al. (2015) Endoplasmic reticulum stress as a novel mechanism in amiodarone-induced destructive thyroiditis. J Clin Endocrinol Metab 100:E1-10
Lee, Hanna J; Li, Cheuk Wun; Hammerstad, Sara Salehi et al. (2015) Immunogenetics of autoimmune thyroid diseases: A comprehensive review. J Autoimmun 64:82-90

Showing the most recent 10 out of 66 publications