Orthotopic liver transplantation (OLT) is an effective therapeutic modality for the treatment of end-stage liver disease. However, ischemia/reperfusion injury (IRI), an exogenous Ag-independent component of the """"""""harvesting"""""""" insult, remains one of the key limitations after OLT. Moreover, the quality of donor organs decreases along with the aging of general population and associated pathological conditions. This proposal is built upon the insights gained from our previous studies on a novel approach of combating organ IRI by locally inducing heme oxygenase-1 (HO-1) that protects against the severity of oxidative stress. Indeed, local HO-1 expression and functional response should be considered as a denominator of donor organ quality. We have also shown the role of innate immunity in liver IRI. Indeed, by utilizing a non-transplant mouse warm liver IRI model, we have documented that: (i) TLR4 activation mediates liver inflammation via IRF-3 pathway;(ii) CXCL10 regulates liver innate immune responses;(iii) Type-I IFN mediates synergy between Kupffer cells and hepatocytes, and (iv) endogenous TLR ligands are crucial in TLR4 activation-induced """"""""sensoring"""""""" and IRI. To mimic the clinical scenario, we have recently developed a mouse model of prolonged liver cold preservation, followed by syngeneic OLT. We hypothesize that cross talk between the opposing pathways, i.e., HO-1 in the donor organ, and TLR4 in OLT recipients is instrumental in the mechanism of liver IRI. Our corollary hypothesis states that Nrf2, a bZIP transcriptional factor that regulates stress response/regulates cell redox balance, controls dysregulated HO-1 - TLR4 signaling during IRI.
Aim 1. To analyze mechanisms by which suboptimal HO-1 deficient liver grafts affect IRI sequel and TLR4 signaling in OLT recipients. Livers from WT, HO-1 deficient (+/-;KO) and HO-1 overexpressing (Tg) donors will be stored for 18 h at 4 C, and then transplanted to syngeneic WT mice. We will study (i) whether HO-1 expression and by which donor liver cell type affect IRI and OLT outcome, and (ii) if and how the local HO-1 expression in OLT affects host TLR4 signaling.
Aim 2. To dissect mechanisms by which modulation of recipient TLR4 signaling ameliorate IRI and improve the outcome of suboptimal OLTs. Livers from WT or HO-1 deficient (+/-;KO) donors will be stored for 18 h at 4 C, and then transplanted to syngeneic TRIF- or Type I IFN receptor (IFNAR)-KO mice. We will study (i) whether selective ablation of downstream TLR4 signaling in the host affect IRI sequel/OLT inflammation, and (ii) if HO-1- TLR4 cross talk can influence HMGB1-mediated IR inflammation and organ damage in OLT recipients.
Aim 3. To analyze mechanisms by which Nrf2 signaling influence IRI in OLT recipients. Livers from donor mice that are Nrf2-deficient or Nrf2-overexpressing (hepatocyte-specific conditional disruption of the Keap1 gene, which represses Nrf2) will be stored for 18 h at 4 C, and transplanted to WT mice. By modulating oxidant (HO-1 siRNA) and inflammatory (anti-HMGB1/rHMGB1) responses, we will study the regulatory function of Nrf2 upon (i) HO-1 vs (ii) TLR4 signaling pathways during IRI in OLT recipients.

Public Health Relevance

Host sensitization remains the major problem in clinical organ transplantation. Many prospective transplant patients are sensitized following blood transfusions, pregnancies, or failed previous grafts. This project is designed to analyze cell mediated mechanisms leading to accelerated rejection of organ allografts and ultimately to design novel and much needed therapeutic approaches to ameliorate transplant rejection in sensitized patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK062357-09
Application #
8235927
Study Section
Surgery, Anesthesiology and Trauma Study Section (SAT)
Program Officer
Doo, Edward
Project Start
2002-07-01
Project End
2014-01-31
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
9
Fiscal Year
2012
Total Cost
$328,285
Indirect Cost
$115,113
Name
University of California Los Angeles
Department
Surgery
Type
Schools of Medicine
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Kageyama, Shoichi; Nakamura, Kojiro; Fujii, Takehiro et al. (2018) Recombinant relaxin protects liver transplants from ischemia damage by hepatocyte glucocorticoid receptor: From bench-to-bedside. Hepatology 68:258-273
Kageyama, Shoichi; Hirao, Hirofumi; Nakamura, Kojiro et al. (2018) Recipient HO-1 inducibility is essential for posttransplant hepatic HO-1 expression and graft protection: From bench-to-bedside. Am J Transplant :
Zhang, Min; Nakamura, Kojiro; Kageyama, Shoichi et al. (2018) Myeloid HO-1 modulates macrophage polarization and protects against ischemia-reperfusion injury. JCI Insight 3:
Kageyama, Shoichi; Nakamura, Kojiro; Ke, Bibo et al. (2018) Serelaxin induces Notch1 signaling and alleviates hepatocellular damage in orthotopic liver transplantation. Am J Transplant 18:1755-1763
Nakamura, Kojiro; Kageyama, Shoichi; Yue, Shi et al. (2018) Heme oxygenase-1 regulates sirtuin-1-autophagy pathway in liver transplantation: From mouse to human. Am J Transplant 18:1110-1121
Lu, Ling; Yue, Shi; Jiang, Longfeng et al. (2018) Myeloid Notch1 deficiency activates the RhoA/ROCK pathway and aggravates hepatocellular damage in mouse ischemic livers. Hepatology 67:1041-1055
Nakamura, Kojiro; Kageyama, Shoichi; Ke, Bibo et al. (2017) Sirtuin 1 attenuates inflammation and hepatocellular damage in liver transplant ischemia/Reperfusion: From mouse to human. Liver Transpl 23:1282-1293
Zhang, C; Zhang, Y; Liu, Y et al. (2017) A Soluble Form of P Selectin Glycoprotein Ligand 1 Requires Signaling by Nuclear Factor Erythroid 2-Related Factor 2 to Protect Liver Transplant Endothelial Cells Against Ischemia-Reperfusion Injury. Am J Transplant 17:1462-1475
Nakamura, Kojiro; Zhang, Min; Kageyama, Shoichi et al. (2017) Macrophage heme oxygenase-1-SIRT1-p53 axis regulates sterile inflammation in liver ischemia-reperfusion injury. J Hepatol 67:1232-1242
Liu, Yuanxing; Ji, Haofeng; Zhang, Yu et al. (2015) Negative CD4?+?TIM-3 signaling confers resistance against cold preservation damage in mouse liver transplantation. Am J Transplant 15:954-964

Showing the most recent 10 out of 77 publications