Acute kidney injury (AKI) is a significant factor predisposing chronic kidney disease (CKD), however the nature of the relationship is not clear. We demonstrated that renal capillary density is permanently compromised in rats following AKI induced by ischemia reperfusion (I/R). AKI alters renal hemodynamic responses and predisposes to salt- sensitive hypertension and we demonstrated that preservation of vascular structure following I/R attenuates high-salt induced CKD. However, immunosuppression also blocked salt-induced hypertension and CKD following AKI. Moreover, preliminary studies on the contralateral kidney following unilateral AKI (termed remote/indirect AKI) demonstrates that circulating factors alter hemodynamic function in the absence of direct injury. Our overarching hypothesis is that AKI alters chronic renal function due to vascular dropout and activation and differentiation of T lymphocytes, which have independent and synergistic effects to promote hypertension and CKD. Rats will be studied in models of direct AKI injury and remote AKI in combination with reduced renal mass and high salt diet.
Specific aim 1 will test the hypothesis that AKI promotes the persistent deposition of T cells and their cytokine profiles are modulated by the type of injury (direct vs. remote), reduced renal mass, and dietary salt. These studies will utilize FACS analysis and characterize T helper differentiation by assessing cytokine profiles produced by T-cells, and the activation of antigen presenting cells following injury.
Specific aim 2 will test the hypothesis that AKI primed lymphocytes influence renal hemodynamic function, hypertension and CKD following direct or remote renal injury. These studies will utilize both immunosuppressive and adoptive transfer approaches to evaluate alterations in hemodynamic control. Additional studies using adoptive transfer into injured or non-injured T cell deficient ras will be used to evaluate the distinct and synergistic interactions of AKI and injury activated T cells on salt induced CKD. Finally, Specific aim 3 will evaluate the hypothesis that T cell differentiation induced by high salt diet (following direct injury), is a key step in the AKI to CK transition. These studies will use strategies to block specific co-stimulatory and chemokine pathways which may specifically enhanced T cell differentiation and determine if commonly utilized anti-hypertensive treatments influence T-cell differentiation in response to high salt die following AKI.

Public Health Relevance

Acute kidney injury (AKI) is the most common renal disease requiring hospitalization is becoming a widely recognized contributor toward the development of chronic kidney disease. Progressive kidney disease following AKI may result from incomplete tissue repair responses, such as a reduction in the number of renal micro-vessels or the activation of immune responses. The current program will allow the evaluation the potential interaction between altered immune function on altered vascular function as it may be related to the transition of acute kidney injury to chronic kidney disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Kimmel, Paul
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Indiana University-Purdue University at Indianapolis
Schools of Medicine
United States
Zip Code
Kolb, Alexander L; Corridon, Peter R; Zhang, Shijun et al. (2018) Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. J Am Soc Nephrol 29:1154-1164
Mehrotra, Purvi; Collett, Jason A; Gunst, Susan J et al. (2018) Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 314:R265-R273
Basile, D P; Collett, J A; Yoder, M C (2018) Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 222:
Collett, Jason A; Corridon, Peter R; Mehrotra, Purvi et al. (2017) Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. J Am Soc Nephrol 28:2081-2092
Basile, David P; Mehrotra, Purvi (2017) Surprising Enhancement of Fibrosis by Tubule-Specific Deletion of the TGF-? Receptor: A New Twist on an Old Paradigm. J Am Soc Nephrol 28:3427-3429
Collett, Jason A; Mehrotra, Purvi; Crone, Allison et al. (2017) Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol Renal Physiol 312:F897-F907
Collett, Jason A; Traktuev, Dmitry O; Mehrotra, Purvi et al. (2017) Human adipose stromal cell therapy improves survival and reduces renal inflammation and capillary rarefaction in acute kidney injury. J Cell Mol Med 21:1420-1430
Mehrotra, Purvi; Collett, Jason A; McKinney, Seth D et al. (2017) IL-17 mediates neutrophil infiltration and renal fibrosis following recovery from ischemia reperfusion: compensatory role of natural killer cells in athymic rats. Am J Physiol Renal Physiol 312:F385-F397
de Bragan├ža, Ana C; Volpini, Rildo A; Mehrotra, Purvi et al. (2016) Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury. Physiol Rep 4:
Basile, David P; Bonventre, Joseph V; Mehta, Ravindra et al. (2016) Progression after AKI: Understanding Maladaptive Repair Processes to Predict and Identify Therapeutic Treatments. J Am Soc Nephrol 27:687-97

Showing the most recent 10 out of 38 publications