Epithelial cells exhibit remarkable apicobasal subcellular polarity that is essential for the proper functioning of epithelial tissues and allows epithelial cells to form a specialized apical structures, such as apical primary cilia. Finally, epithelial cells coordinate their polarization with neighboring cells to form an apical lumen, a key step in the establishment of renal architecture, and thereby function. Accordingly, mutations that disrupt function of molecules necessary for apicobasal polarization and apical cilia formation result in a variety of renal disorders, such as polycystic kidney disease (PKD). Thus, the overarching goal of this project is to characterize the molecular machinery coordinating apical lumen formation and ciliogenesis in kidney. To that end, we designed three specific aims. In the aim#1 we will analyze investigate the molecular machinery that determines where and when apical lumen forms and how that is coordinated with ciliogenesis. Specifically, we will test the role of newly identified polarity regulator Tbc1d1 in mediating lumenogenesis during kidney development. In the aim#2 we will dissect the coordination between the apical lumenogenesis and primary cilia formation/signaling. We recently identified Rab19 as Tbc1d1 binding protein and have shown that Rab19 is required for cilia formation. Thus, we will investigate the role of Rab19 in mediating cilia formation and targeting of cilia resident proteins. Finally, in aim#3 we will test dissect the mechanisms mediating kidney lumenogenesis and ciliogenesis in vivo using zebrafish. Completion of this project will provide a novel insight in understanding the molecular machinery and regulation of kidney epithelial cell polarization and cilia formation during normal epithelial tissue morphogenesis and in disease.

Public Health Relevance

The goal of this project is to understand the molecular mechanisms coordinating epithelial cell polarization, apical lumen formation and ciliogenesis in kidney cells. During four previous funding cycles we have demonstrated that polarized endosome transport and cell division plays key roles in targeting proteins to the apical plasma membrane and identified the proteins that are required for this process. In this study we will identify the function and regulation of these polarity organizing proteins as well as their role in apical lumen formation and ciliogenesis during normal kidney development as well as in polycystic kidney disease (PKD).

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK064380-15
Application #
9885303
Study Section
Membrane Biology and Protein Processing Study Section (MBPP)
Program Officer
Mullins, Christopher V
Project Start
2004-01-15
Project End
2024-06-30
Budget Start
2019-09-04
Budget End
2020-06-30
Support Year
15
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Colorado Denver
Department
Biology
Type
Schools of Medicine
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Gibieža, Paulius; Prekeris, Rytis (2018) Rab GTPases and cell division. Small GTPases 9:107-115
Das, Lipsa; Gard, Jaime M C; Prekeris, Rytis et al. (2018) Novel Regulation of Integrin Trafficking by Rab11-FIP5 in Aggressive Prostate Cancer. Mol Cancer Res 16:1319-1331
Jewett, Cayla E; Prekeris, Rytis (2018) Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic :
Antanavi?i?t?, Ieva; Gibieža, Paulius; Prekeris, Rytis et al. (2018) Midbody: From the Regulator of Cytokinesis to Postmitotic Signaling Organelle. Medicina (Kaunas) 54:
Dionne, Lai Kuan; Peterman, Eric; Schiel, John et al. (2017) FYCO1 regulates accumulation of post-mitotic midbodies by mediating LC3-dependent midbody degradation. J Cell Sci 130:4051-4062
Peterman, E; Prekeris, R (2017) Understanding post-mitotic roles of the midbody during cell differentiation and polarization. Methods Cell Biol 137:173-186
Mandell, Michael A; Jain, Ashish; Kumar, Suresh et al. (2016) TRIM17 contributes to autophagy of midbodies while actively sparing other targets from degradation. J Cell Sci 129:3562-3573
Mangan, Anthony J; Sietsema, Daniel V; Li, Dongying et al. (2016) Cingulin and actin mediate midbody-dependent apical lumen formation during polarization of epithelial cells. Nat Commun 7:12426
Dionne, Lai Kuan; Wang, Xiao-Jing; Prekeris, Rytis (2015) Midbody: from cellular junk to regulator of cell polarity and cell fate. Curr Opin Cell Biol 35:51-8
Prekeris, Rytis (2015) Analyzing the functions of Rab11-effector proteins during cell division. Methods Cell Biol 130:19-34

Showing the most recent 10 out of 36 publications