We have (a) defined upstream activators of atypical protein kinase C (aPKC) and Akt during insulin action in muscle, adipocytes and liver and (b) showed that aPKC is required for insulin-stimulated increases in glucose transport in muscle and adipocytes and activation of lopogenic enzymes in liver. Also, in multiple rodent models of obesity (O) and type 2 diabetes mellitus (T2DM), we defined the following tissue-specific defects in insulin signaling factors: (a) aPKC activation is impaired in muscle and adipocytes in all O and T2DM models via diminished IRS-1-dependent phosphatidylinositol 3-kinase (PI3K) activation, but, in contrast, fully conserved in liver via IRS-2-dependent PI3K;and (b) Akt activation is impaired via diminished IRS-1/PI3K activation in muscle in most O and T2DM models, and in liver in all T2DM models. Selective conservation of hepatic IRS-2/aPKC activation in O and T2DM is problematic, as hyperinsulinemia therein causes excessive activation of sterol receptor element binding protein-1c (SREBP-1c), which increases expression of multiple enzymes that control hepatic lipid synthesis, and this upregulation provokes many """"""""metabolic syndrome"""""""" (MS) abnormalities. Indeed, using adenoviral-mediated expression methods, selective inhibition of hepatic aPKC in multiple O/MS and T2DM models elicits rapid and dramatic improvements in hepatosteatosis, hyperlipidemia, glucose intolerance, hyperinsulinemia, and insulin signaling in muscle and liver;also, as an added benefit, inhibition of hepatic aPKC surprisingly diminishes expression of glucogenic enzymes, phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). In other words, hepatic aPKC inhibition has insulin-like effects on these hepatic enzymes that regulate blood glucose levels. Similarly, in preliminary studies, two newly discovered highly specific aPKC inhibitors preferentially inhibited hepatic aPKC and thereby diminished expression of hepatic enzymes that promote both lipid and glucose synthesis/release in both human hepatocytes and intact rodent liver;furthermore, in an mouse model of O/MS/T2DM, these biochemical agents selectively inhibited hepatic aPKC and this was attended by (a) a rapid and complete or nearly complete reversal of O/MS features, viz., abdominal obesity, hepatosteatosis, and hypertriglyceridemia and (b) restoration of insulin signaling in muscle, fat and liver, and normalization of serum glucose-lowering effects of insulin. Clearly, we need to further develop agents that selectively diminish aPKC activation in liver and thereby effectively control O/MS and T2DM. Accordingly, there is an urgent need to:
Specific Aim 1, define insulin signaling mechanisms and consequences of aPKC inhibition in human hepatocytes;
Specific Aim 2, elucidate molecular mechanisms for aPKC activation;
and Specific Aim 3, further develop our novel biochemical inhibitors of hepatic aPKC and define their metabolic effects in mouse O/MS/T2DM models. We are confident that the proposed studies will provide a new approach for effective treatment of O/MS and T2DM.

Public Health Relevance

These findings will provide new avenues for finding treatments for the metabolic syndrome and type 2 diabetes, which together are estimated to cause at least 50% of the cardiovascular disorders seen in the US population, and which are exceedingly costly health issues.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK065969-10
Application #
8449308
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Silva, Corinne M
Project Start
2003-07-01
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$262,012
Indirect Cost
$66,223
Name
Tampa VA Research and Education Fdn
Department
Type
DUNS #
624880154
City
Zephyrhills
State
FL
Country
United States
Zip Code
33541
Sajan, Mini P; Hansen, Barbara C; Higgs, Margaret G et al. (2018) Atypical PKC, PKC?/?, activates ?-secretase and increases A?1-40/42 and phospho-tau in mouse brain and isolated neuronal cells, and may link hyperinsulinemia and other aPKC activators to development of pathological and memory abnormalities in Alzheimer's Neurobiol Aging 61:225-237
Sajan, Mini; Hansen, Barbara; Ivey 3rd, Robert et al. (2016) Brain Insulin Signaling Is Increased in Insulin-Resistant States and Decreases in FOXOs and PGC-1? and Increases in A?1-40/42 and Phospho-Tau May Abet Alzheimer Development. Diabetes 65:1892-903
Sajan, Mini P; Ivey 3rd, Robert A; Farese, Robert V (2015) BMI-related progression of atypical PKC-dependent aberrations in insulin signaling through IRS-1, Akt, FoxO1 and PGC-1? in livers of obese and type 2 diabetic humans. Metabolism 64:1454-65
Sajan, Mini P; Ivey, Robert A; Lee, Mackenzie C et al. (2015) Hepatic insulin resistance in ob/ob mice involves increases in ceramide, aPKC activity, and selective impairment of Akt-dependent FoxO1 phosphorylation. J Lipid Res 56:70-80
Ivey, Robert A; Sajan, Mini P; Farese, Robert V (2014) Requirements for pseudosubstrate arginine residues during autoinhibition and phosphatidylinositol 3,4,5-(PO?)?-dependent activation of atypical PKC. J Biol Chem 289:25021-30
Farese, Robert V; Lee, Mackenzie C; Sajan, Mini P (2014) Atypical PKC: a target for treating insulin-resistant disorders of obesity, the metabolic syndrome and type 2 diabetes mellitus. Expert Opin Ther Targets 18:1163-75
Farese, Robert V; Lee, Mackenzie C; Sajan, Mini P (2014) Hepatic Atypical Protein Kinase C: An Inherited Survival-Longevity Gene that Now Fuels Insulin-Resistant Syndromes of Obesity, the Metabolic Syndrome and Type 2 Diabetes Mellitus. J Clin Med 3:724-40
Sajan, Mini P; Acevedo-Duncan, Mildred E; Standaert, Mary L et al. (2014) Akt-dependent phosphorylation of hepatic FoxO1 is compartmentalized on a WD40/ProF scaffold and is selectively inhibited by aPKC in early phases of diet-induced obesity. Diabetes 63:2690-701
Sajan, Mini P; Jurzak, Michael J; Samuels, Varman T et al. (2014) Impairment of insulin-stimulated glucose transport and ERK activation by adipocyte-specific knockout of PKC-? produces a phenotype characterized by diminished adiposity and enhanced insulin suppression of hepatic gluconeogenesis. Adipocyte 3:19-29
Sajan, Mini P; Ivey 3rd, Robert A; Lee, Mackenzie et al. (2014) PKC? haploinsufficiency prevents diabetes by a mechanism involving alterations in hepatic enzymes. Mol Endocrinol 28:1097-107

Showing the most recent 10 out of 27 publications