A paucity of functional ?-cells is a central feature of type 1 and type 2 diabetes and an urgent question in islet biology relates to plasticity of ?-cell mass in the long-term goal of developing strategies to treat both forms of the disease. This application is focused on the role of growth factors, especially insulin and IGF-I receptors and proteins in their signaling pathway, in regulation of ?-cell proliferation, apoptosis and secretory function. We use unique genetic mouse models lacking one or more proteins in the insulin/IGF-I signaling pathway in ?-cells and complement with studies in ? cell lines and primary islets derived from the knockouts for in vitro and ex vivo experiments. Based on Preliminary Data we seek to continue our studies with the following Specific Aims:
Aim 1 : Determine the role of insulin/IGF-I signaling in proinsulin processing and test the hypothesis that an intact insulin/IRS-2 pathway is essential for appropriate proinsulin processing.
Aim 2 : Define the alterations in endoplasmic reticulum (ER) stress in ? cells lacking proteins in the insulin signaling pathway and test the hypothesis that the insulin/IRS-2 pathway is essential to limit ER stress in ? cells: Our preliminary data indicates a direct role for the insulin receptor and IRS-2, but not IRS-1, in ER stress responses in ? cells. We plan to dissect the mechanisms and pathways that underlie enhanced ER stress in the context of insulin/IRS-2 signaling with a focus on IRE-1a and contrast the findings with the pathways mediated by IRS-1.
Aim 3 : Dissect the mechanisms that link the insulin/IGF-I signaling with proteins involved in the ?-cell growth response to insulin resistance: Our preliminary data using in vivo approaches builds on previous work and indicates critical roles for cycling D2 and Px-1 in the compensatory islet growth response to insulin resistance. We will focus on these two proteins and explore their link with FoxO1 to dissect the mechanisms that underlie the proliferation responses especially in the context of differences between insulin and IGF-1 signaling. Together we believe these studies will provide novel insights into the role of growth factors in the regulation of ?-cell proliferation and apoptosis.

Public Health Relevance

This project is aimed at understanding the mechanism(s) that underlie the proliferation and survival of beta cells with a focus on the insulin and insulin-like growth factor pathways. Using genetically engineered mouse models and primary islets and beta cell lines derived from the knockout mice we will focus on identifying the pathways that promote beta cell regeneration with the long-term goal of developing therapeutic approaches to counter the loss of beta cells in both type 1 and type 2 diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK067536-09
Application #
8502639
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Sato, Sheryl M
Project Start
2004-03-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$320,150
Indirect Cost
$121,915
Name
Joslin Diabetes Center
Department
Type
DUNS #
071723084
City
Boston
State
MA
Country
United States
Zip Code
02215
Rao, Tata Nageswara; Gupta, Manoj K; Softic, Samir et al. (2018) Attenuation of PKC? enhances metabolic activity and promotes expansion of blood progenitors. EMBO J 37:
Jeong, Da Eun; Heo, Sungeun; Han, Ji Hye et al. (2018) Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic ? Cells. Mol Cells 41:909-916
Kim, Chongtae; Jeong, Da Eun; Heo, Sungeun et al. (2018) Reduced expression of the RNA-binding protein HuD in pancreatic neuroendocrine tumors correlates with low p27Kip1 levels and poor prognosis. J Pathol 246:231-243
Shirakawa, J; De Jesus, D F; Kulkarni, R N (2017) Exploring inter-organ crosstalk to uncover mechanisms that regulate ?-cell function and mass. Eur J Clin Nutr 71:896-903
Kawamori, Dan; Shirakawa, Jun; Liew, Chong Wee et al. (2017) GLP-1 signalling compensates for impaired insulin signalling in regulating beta cell proliferation in ?IRKO mice. Diabetologia 60:1442-1453
Shirakawa, Jun; Fernandez, Megan; Takatani, Tomozumi et al. (2017) Insulin Signaling Regulates the FoxM1/PLK1/CENP-A Pathway to Promote Adaptive Pancreatic ? Cell Proliferation. Cell Metab 25:868-882.e5
Patti, Mary-Elizabeth; Goldfine, Allison B; Hu, Jiang et al. (2017) Heterogeneity of proliferative markers in pancreatic ?-cells of patients with severe hypoglycemia following Roux-en-Y gastric bypass. Acta Diabetol 54:737-747
Ghanem, Simona S; Muturi, Harrison T; DeAngelis, Anthony M et al. (2017) Age-dependent insulin resistance in male mice with null deletion of the carcinoembryonic antigen-related cell adhesion molecule 2 gene. Diabetologia 60:1751-1760
Sakaguchi, Masaji; Fujisaka, Shiho; Cai, Weikang et al. (2017) Adipocyte Dynamics and Reversible Metabolic Syndrome in Mice with an Inducible Adipocyte-Specific Deletion of the Insulin Receptor. Cell Metab 25:448-462
Dirice, Ercument; Ng, Raymond W S; Martinez, Rachael et al. (2017) Isoform-selective inhibitor of histone deacetylase 3 (HDAC3) limits pancreatic islet infiltration and protects female nonobese diabetic mice from diabetes. J Biol Chem 292:17598-17608

Showing the most recent 10 out of 107 publications