Pancreatic beta-cell failure is a critical determinant for the development of diabetes. In spite of the importance of beta-cell mass in diabetes, there is a lack in the knowledge base that centers on how beta-cells enter the cell cycle and proliferate. Akt is one of the promising molecules identified as a potential target to induce proliferation and survival of beta-cells. Preliminary studies show that Akt alters beta-cell proliferation by activation of the cyclin D/cdk4 complex. The objective of this proposal is to delineate the molecular genetic mechanisms that link Akt to activation of the cyclin D/cdk4 complex. The hypothesis to be tested is that Akt signaling induces beta-cell proliferation by translational control of cyclin D/cdk4 complex components. This will be accomplished via three distinct strategies:
Aim 1 will determine the effects of Akt/TSC/mTOR-mediated translational control in beta-cell proliferation. These experiments will performed in animal models with increased and decreased mTOR signaling in beta-cells. In vitro characterization, cell cycle analysis and assessment of protein of cyclin D/cdk4 complex components using islets from these mice will be complemented by in vitro experiments in insulinoma cell lines.
Aim 2 will establish the role of rapamycin sensitive (TORC1) and insensitive pathways (TORC2) in beta-cell proliferation induced by activation of Akt/mTOR signaling. The approach used includes characterization, activity and proliferative role of TORC 1 and 2 complexes components in islets and insulinoma cells with altered TORC1 and 2 signaling.
Aim 3 will identify the importance of S6K-dependent pathway in beta-cell proliferation induced by Akt/mTOR/TORC1 -dependent signaling. Experiments include transgenic and in vitro models with increased and decreased S6K signaling in beta-cells. Knowing the oncogenic potential of Akt, the research proposed in this application is significant because it will delineate potential downstream events and components that separate proliferative responses from oncogenic potential. This is expected to have a positive impact for the design of pharmaceutical agents that will induce selectively beta-cell proliferation without altering the risk of oncogenic transformation. These agents could be used in translational experiments to treat diabetes by expanding beta-cell mass in vivo, increase the pool of transplantable islets and enhance the success of islet transplantation. Another major impact of these studies is obtaining a better understanding of the effects of rapamycin in beta-cells mass and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK073716-05S1
Application #
8011490
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Silva, Corinne M
Project Start
2010-02-19
Project End
2010-04-30
Budget Start
2010-02-19
Budget End
2010-04-30
Support Year
5
Fiscal Year
2010
Total Cost
$56,537
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Navarro, Guadalupe; Allard, Camille; Morford, Jamie J et al. (2018) Androgen excess in pancreatic ? cells and neurons predisposes female mice to type 2 diabetes. JCI Insight 3:
Gregg, Brigid E; Botezatu, Nathalie; Brill, Joshua D et al. (2018) Gestational exposure to metformin programs improved glucose tolerance and insulin secretion in adult male mouse offspring. Sci Rep 8:5745
Blandino-Rosano, Manuel; Barbaresso, Rebecca; Jimenez-Palomares, Margarita et al. (2017) Loss of mTORC1 signalling impairs ?-cell homeostasis and insulin processing. Nat Commun 8:16014
Elghazi, Lynda; Blandino-Rosano, Manuel; Alejandro, Emilyn et al. (2017) Role of nutrients and mTOR signaling in the regulation of pancreatic progenitors development. Mol Metab 6:560-573
Alejandro, Emilyn U; Bozadjieva, Nadejda; Blandino-Rosano, Manuel et al. (2017) Overexpression of Kinase-Dead mTOR Impairs Glucose Homeostasis by Regulating Insulin Secretion and Not ?-Cell Mass. Diabetes 66:2150-2162
Bozadjieva, Nadejda; Blandino-Rosano, Manuel; Chase, Jennifer et al. (2017) Loss of mTORC1 signaling alters pancreatic ? cell mass and impairs glucagon secretion. J Clin Invest 127:4379-4393
Cras-Méneur, Corentin; Conlon, Megan; Zhang, Yaqing et al. (2016) Early pancreatic islet fate and maturation is controlled through RBP-J?. Sci Rep 6:26874
Cras-Méneur, Corentin; Elghazi, Lynda; Fort, Patrice et al. (2016) Noninvasive in vivo imaging of embryonic ?-cell development in the anterior chamber of the eye. Islets 8:35-47
Blandino-Rosano, Manuel; Scheys, Joshua O; Jimenez-Palomares, Margarita et al. (2016) 4E-BP2/SH2B1/IRS2 Are Part of a Novel Feedback Loop That Controls ?-Cell Mass. Diabetes 65:2235-48
Alejandro, Emilyn U; Bozadjieva, Nadejda; Kumusoglu, Doga et al. (2015) Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and ? Cell Failure. Cell Rep 13:2527-2538

Showing the most recent 10 out of 36 publications