XLocs and Gsa, the alpha subunit of the stimulatory G protein (Gsa), are two related proteins derived from the same gene locus, GNAS. XLas differs from the alpha subunit of the stimulatory G protein (Gsa) by a large N-terminal domain with unique sequence. It is otherwise identical to the latter and comprises most of the domains shown to be functionally important for Gsa. Thus, XLas is predicted to act as a novel alpha subunit of the stimulatory G protein. However, owing to its unique N-terminal domain, XLas could importantly differ from Gsa with respect to its biological roles and regulation. When introduced into cells endogenously lacking Gsa and XLas (Gnas^""""""""'"""""""" cells), XLas can mediate receptor-stimulated cAMP generation, but receptor coupling to XLas could not be demonstrated in several other cell lines and tissues, suggesting that the actions of XLas can be cell-specific. The animal models in which XLas is ablated have established that XLas is essential for many biological processes, including postnatal adaptation to feeding, energy and glucose metabolism, and adipocyte biology. However, these in vivo studies were unable to demonstrate a role for XLas as a signaling protein that is similar to Gsa. Thus, the biological roles of XLas currently remain unclear. Our main objective is to determine the role of XLas as a novel alpha subunit that can replace Gsa in vivo.
In Specific Aim 1, we propose to address whether XLas can substitute for Gsa in vivo by studying the actions of parathyroid hormone in the renal proximal tubule as an in vivo setting whereby the roles of XLos and Gsa can be studied precisely.
In Specific Aim 2, we propose to determine whether XLas is involved in the temporal development of PTH-resistance as seen in patients with pseudohypoparathyroidism, a disorder caused by mutations disrupting Gsa activity and/or expression. For accomplishing our aims, we will investigate proximal tubular PTH responsiveness in various transgenic and knockout mouse strains generated by us or by our collaborators. These studies will reveal the interacting roles of XLas and Gsa in the proximal tubular PTH actions and are predicted to improve the understanding of hormone responses that typically involve G protein-coupled receptors. Ultimately, given the importance of this signaling pathway in normal physiology and human disease, our investigations may lead to the identification of novel targets for development of new drugs and diagnostic tools.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
3R01DK073911-03S2
Application #
8003287
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Malozowski, Saul N
Project Start
2010-02-01
Project End
2010-04-30
Budget Start
2010-02-01
Budget End
2010-04-30
Support Year
3
Fiscal Year
2010
Total Cost
$39,564
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Karaca, Anara; Malladi, Vijayram Reddy; Zhu, Yan et al. (2018) Constitutive stimulatory G protein activity in limb mesenchyme impairs bone growth. Bone 110:230-237
Bastepe, Murat (2018) GNAS mutations and heterotopic ossification. Bone 109:80-85
Bastepe, Murat; Turan, Serap; He, Qing (2017) Heterotrimeric G proteins in the control of parathyroid hormone actions. J Mol Endocrinol 58:R203-R224
He, Qing; Bouley, Richard; Liu, Zun et al. (2017) Large G protein ?-subunit XL?s limits clathrin-mediated endocytosis and regulates tissue iron levels in vivo. Proc Natl Acad Sci U S A 114:E9559-E9568
Reyes, Monica; Karaca, Anara; Bastepe, Murat et al. (2017) A novel deletion involving GNAS exon 1 causes PHP1A and further refines the region required for normal methylation at exon A/B. Bone 103:281-286
Zhu, Yan; He, Qing; Aydin, Cumhur et al. (2016) Ablation of the Stimulatory G Protein ?-Subunit in Renal Proximal Tubules Leads to Parathyroid Hormone-Resistance With Increased Renal Cyp24a1 mRNA Abundance and Reduced Serum 1,25-Dihydroxyvitamin D. Endocrinology 157:497-507
Wentworth, Kelly; Hsing, Alyssa; Urrutia, Ashley et al. (2016) A Novel T55A Variant of Gs ? Associated with Impaired cAMP Production, Bone Fragility, and Osteolysis. Case Rep Endocrinol 2016:2691385
He, Qing; Zhu, Yan; Corbin, Braden A et al. (2015) The G protein ? subunit variant XL?s promotes inositol 1,4,5-trisphosphate signaling and mediates the renal actions of parathyroid hormone in vivo. Sci Signal 8:ra84
Turan, Serap; Bastepe, Murat (2015) GNAS Spectrum of Disorders. Curr Osteoporos Rep 13:146-58
Turan, Serap; Thiele, Susanne; Tafaj, Olta et al. (2015) Evidence of hormone resistance in a pseudo-pseudohypoparathyroidism patient with a novel paternal mutation in GNAS. Bone 71:53-7

Showing the most recent 10 out of 35 publications