The cellular response to decreased iron availability, iron restriction, serves as the basis for anemia in over a billion people worldwide. This response impairs erythropoietin (Epo) driven development of bone marrow erythroid progenitors and contributes to anemias associated with chronic diseases, aging, as well as iron deficiency anemia (IDA). In aggregate, anemias associated with iron restriction have major health and economic impacts. Therefore, understanding the mechanisms underlying the iron restriction response and designing therapies to target this response are critically important. The erythroid iron restriction response involves lineage-selective inactivation of the aconitase enzymes involved in metabolism of citrate to isocitrate. Supplementation of iron-deprived cells with isocitrate strikingly rescues erythroid development in cell culture and animal models of anemia. Conversely, pharmacologic inhibition of aconitase suffices to block differentiation of erythroid progenitors, inducing anemia in normal mice and correcting erythrocytosis in mice with polycythemia vera. The regulation of erythropoiesis by aconitase activity arises through complex and poorly-understood interplay between metabolism and Epo signaling, affecting PKC, ERK, and AKT. The translational importance of this pathway was highlighted in our recent publication showing isocitrate treatment to ameliorate anemia of chronic inflammation in a rat arthritis model (J. Clin. Invest., 123:3614-23, 2013). These studies have led to NIH STTR funding for pre-clinical development of isocitrate as a novel therapy for human anemias of chronic disease and inflammation (ACDI). The therapeutic efficacy of isocitrate derives from its capacity to block the iron restriction response, which otherwise sensitizes erythroid progenitors to inhibition by inflammatory cytokines. This sensitization arises from superinduction of the transcription factor PU.1 by cooperative interplay between specific iron restriction and inflammatory signaling pathways. Normally downregulated early in erythroid development, PU.1 is a master regulator whose levels dictate myeloid versus erythroid cell fate in hematopoietic progenitors.
Aim 1 will characterize erythroid PU.1 dysregulation associated with clinically-relevant in vivo models of iron restricted anemia. Regarding proximal signaling abnormalities in erythroid iron restriction, exciting new data implicate the scaffold protein Scribble as a key target of aconitase activity. Scribble normally functions as a determinant of cell polarity, as well as a critical assembly platform for multiple phosphatases and kinases. We have found that aconitase inhibition perturbs the polar morphology of developing erythroblasts. Furthermore, signaling pathways controlled by Scribble are dysregulated by either aconitase inhibition or iron restriction. Most compellingly, aconitase inhibition induces dramatic downregulation of Scribble and of its chaperone SGT1. Iron restriction also strongly downregulates Scribble, and isocitrate treatment blocks this downregulation. Accordingly, Aim 2 will determine the mechanism and consequences of erythroid Scribble downregulation by aconitase inhibition and iron restriction.

Public Health Relevance

Debilitating anemias often arise in chronic illnesses like kidney disease, cancer, and autoimmunity. Tremendous resources have been committed to the treatment of these anemias, but the available treatments have several drawbacks. These anemias result from impaired iron delivery to red cell precursors, erythroblasts, leading to a block in their development. Inflammation-associated signals also contribute to this developmental block. Our lab has begun to uncover the mechanisms by which erythroblasts sense and respond to iron deprivation. This information has led to the design of a novel treatment for anemias of chronic disease. The current project will delineate a newly identified pathway by which iron deprivation fundamentally reconfigures erythroblast development.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK079924-07
Application #
9084543
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Roy, Cindy
Project Start
2008-02-01
Project End
2018-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
7
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of Virginia
Department
Pathology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Khalil, Shadi; Delehanty, Lorrie; Grado, Stephen et al. (2018) Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med 215:661-679
Elagib, Kamaleldin E; Lu, Chih-Huan; Mosoyan, Goar et al. (2017) Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition. J Clin Invest 127:2365-2377
Khalil, Shadi; Holy, Maja; Grado, Stephen et al. (2017) A specialized pathway for erythroid iron delivery through lysosomal trafficking of transferrin receptor 2. Blood Adv 1:1181-1194
Richardson, Chanté L; Delehanty, Lorrie L; Bullock, Grant C et al. (2013) Isocitrate ameliorates anemia by suppressing the erythroid iron restriction response. J Clin Invest 123:3614-23
Elagib, Kamaleldin E; Rubinstein, Jeremy D; Delehanty, Lorrie L et al. (2013) Calpain 2 activation of P-TEFb drives megakaryocyte morphogenesis and is disrupted by leukemogenic GATA1 mutation. Dev Cell 27:607-20
Delehanty, Lorrie L; Bullock, Grant C; Goldfarb, Adam N (2012) Protein kinase D-HDAC5 signaling regulates erythropoiesis and contributes to erythropoietin cross-talk with GATA1. Blood 120:4219-28
Rubinstein, Jeremy D; Elagib, Kamaleldin E; Goldfarb, Adam N (2012) Cyclic AMP signaling inhibits megakaryocytic differentiation by targeting transcription factor 3 (E2A) cyclin-dependent kinase inhibitor 1A (CDKN1A) transcriptional axis. J Biol Chem 287:19207-15
Talbot, Anne-Laure; Bullock, Grant C; Delehanty, Lorrie L et al. (2011) Aconitase regulation of erythropoiesis correlates with a novel licensing function in erythropoietin-induced ERK signaling. PLoS One 6:e23850
Bullock, Grant C; Delehanty, Lorrie L; Talbot, Anne-Laure et al. (2010) Iron control of erythroid development by a novel aconitase-associated regulatory pathway. Blood 116:97-108